Juan Domingo Farnos Miro

 

 

Machine-Learning-Explained2

 

 

 

Las máquinas, las TIC, la internet… proporcionan información más rápido de lo que nadie podría haber imaginado, pero el aprendizaje es dar sentido a la información y el descubrimiento de su significado, el verdadero objetivo de la educación, y con las máquinas aun no lo hemos conseguido, aunque algunos estemos en ello..

Los aprendices, dentro de la educación formal de manera sistematizada, y en la informal, de manera generalizada… pueden beneficiarse de la orientación de los algoritmos que apuntan al aprendiz hacia los sistemas de tutoría en línea, por ejemplo, que están demostrando tan eficaz como tutores humanos.

Los alumnos pueden aprender métodos y enfoques de los tutores en línea para luego ayudarles a lo largo de su propio camino de aprendizaje. Sus propios itinerarios de aprendizaje. Ese es el punto: los estudiantes adultos (es decir los estudiantes en edad universitaria) aprenden mejor cuando ellos mismos crean rutas de aprendizaje; el tutor en línea puede proporcionar ayuda, pero no puede ser la totalidad de la experiencia de aprendizaje.

Las tecnologías de aprendizaje adaptativas, análisis de aprendizaje en línea que se utilizan para crear rutas de aprendizaje para los alumnos en función de su rendimiento, pueden ayudar a algunos estudiantes, pero no pueden, en muchos casos, proporcionar la oportunidad para el conocimiento profundo y duradero sobre cómo aprender.

La máquina, en las tecnologías de aprendizaje adaptativo, se ha hecho cargo: el algoritmo es la creación de itinerarios de aprendizaje, y no lo que haga el alumno. Este enfoque podría entenderse como un intento de “aprendizaje semi-pasivo.” Esto no quiere decir que no haya usos de las tecnologías de aprendizaje adaptativo, pero es que decir que este enfoque sólo puede ser un elemento de un camino de aprendizaje humano impulsado .

El aprendizaje por refuerzo es otra parte de Machine Learning que podemos utilizar en la forma en que ayuda a la máquina a aprender de su progreso.

 

El aprendizaje de refuerzo basado en el concepto de aprendizaje no supervisado  otorga una alta esfera de control a los agentes de software y las máquinas para determinar cuál puede ser el comportamiento ideal dentro de un contexto.

La información y la tecnología de las comunicaciones en sí mismo no mejoran el proceso educativo, si el foco está solamente en esto. La atención debe centrarse en lo que las TIC pueden hacer por el proceso educativo en estudios de casos.
Los resultados del aprendizaje son los que una persona entiende, sabe y es capaz de hacer al culminar un proceso de aprendizaje. Los resultados del aprendizaje se expresan en conocimientos, habilidades y competencias adquiridas durante las diferentes experiencias de educación formal, no formal e informal  con el  objetivo de proporcionar a los jóvenes las habilidades requeridas en sus sus actividades, los estudiantes obtienen los mejores resultados, estar abierto a aprender, para buscar y encontrar la manera que más les convenga.

Con el Aprendizaje supervisado tenemos un supervisor externo que tiene suficiente conocimiento del medio ambiente y también comparte el aprendizaje con un supervisor para comprender mejor y completar la tarea, pero ya que tenemos problemas en los que el agente puede realizar tantas tareas.

Podemos tomar el ejemplo de un juego de ajedrez, donde el jugador puede jugar decenas de miles de movimientos para lograr el objetivo final.

 

 

Crear una base de conocimiento para este propósito puede ser una tarea realmente complicada. Por lo tanto, es imperativo que en tales tareas, la computadora aprenda a manejar los asuntos por sí misma. Por lo tanto, es más factible y pertinente que la máquina aprenda de su propia experiencia. Una vez que la máquina ha comenzado a aprender de su propia experiencia, puede obtener conocimiento de estas experiencias para implementarlas en los movimientos futuros. Esta es probablemente la diferencia más grande e imperativa entre los conceptos de refuerzo y aprendizaje supervisado. En estos dos tipos de aprendizaje, hay un cierto tipo de mapeo entre la salida y la entrada. Pero en el concepto de aprendizaje reforzado, existe una función de recompensa ejemplar, a diferencia del aprendizaje supervisado, que le permite al sistema conocer su progreso en el camino correcto.

 

 

Poner orden es en la mejora de las competencias en TIC de la enseñanza mediante la adaptación a los requerimientos de cada disciplina  dentro de la sociedad de la información con diferentes  interfaces  de usuario. Es necesario el uso de los conceptos de la responsable de la adquisición de habilidades específicas de la disciplina sector de las TIC, conocimiento fijación, de desarrollo personal.

 

El aprendizaje de refuerzo básicamente tiene una estructura de mapeo que guía a la máquina desde la entrada hasta la salida. Sin embargo, el aprendizaje no supervisado no tiene tales características presentes en él. En el aprendizaje no supervisado, la máquina se centra en la tarea subyacente de ubicar los patrones en lugar del mapeo para avanzar hacia la meta final, por eso en este paso deberemos obviarlo, en el sentido posterior de su ejecución, es decir, utilizaremos sus patrones durante el proceso, pero después del mismo deberemos derivarlo hacia el aprendizaje SUPERVISADO, ya que es la única manera de llegar al PERSONALIZED LEARNING, por medio de una aplicación.

 

Por ejemplo, si la tarea de la máquina es sugerir una buena actualización de noticias a un usuario, un algoritmo de aprendizaje de refuerzo buscará recibir retroalimentación regular del usuario en cuestión, y luego a través de la retroalimentación construirá un gráfico de conocimiento confiable de todas las noticias. Artículos relacionados que le gusten a la persona. Por el contrario, un algoritmo de aprendizaje no supervisado intentará ver muchos otros artículos que la persona ha leído, similar a este, y sugerir algo que coincida con las preferencias del usuario.

Los reinos en el aprendizaje automático son infinitos.

Puede visitar mi canal de YouTube para conocer más sobre el mundo de la IA y cómo el futuro será dictado por el uso de datos en las máquinas.

 

 

La tecnología abre nuevas formas radicales de la educación; romper barreras entre disciplinas impulsa nuevos campos creativos de la investigación y la invención; y poniendo el emprendimiento social en el centro de la misión de una universidad asegura pensadores brillantes jóvenes pueden llegar a ser nuestros más poderosos solucionadores de problemas.

A través de una colaboración continua, el intercambio de ideas y una buena dosis de coraje, estamos en el camino correcto para asegurar un cambio duradero en nuestra sociedad y en nuestra educación. Estoy emocionado de ver las ideas como éstas crecen y se transforman el futuro de la educación..

 

Para todo ello proponemos preguntas como:

-Cuáles son las dimensiones interculturales clave a considerar en equipos distribuidos?
-¿Cómo dimensiones culturales y sus diferencias se refieren a las preferencias de los canales de comunicación?
-¿Cómo afecta el uso de estas herramientas de una cultura a otra y por qué?
-¿Cuáles son los problemas típicos que surgen cuando los miembros de diferentes culturas tienen que trabajar juntos?
-¿Qué tipo de herramientas y canales de comunicación deben estar disponibles para colaborar en línea?

 

 

Con ello vamos a maximizar el rendimiento de la máquina de una manera que le ayuda a crecer. Aquí se requiere una retroalimentación simple que informe a la máquina sobre su progreso para ayudar a la máquina a conocer su comportamiento.
El aprendizaje por refuerzo no es simple, y es abordado por una gran cantidad de algoritmos diferentes, de hecho un agente decide la mejor acción en función del estado actual de los resultados.
El crecimiento en el aprendizaje por refuerzo ha llevado a la producción de una amplia variedad de algoritmos que ayudan a las máquinas a conocer el resultado de lo que están haciendo. Ya que tenemos una comprensión básica del Aprendizaje de Refuerzo a estas alturas, podemos comprender mejor formando un análisis comparativo entre el Aprendizaje de Refuerzo y los conceptos de Aprendizaje Supervisado y No Supervisado.

Las tecnologías de la información digital están transformando la manera en que trabajamos, aprendemos, y nos comunicamos. Dentro de esta revolución digital son los nuevos enfoques de aprendizaje que transforman los modelos jerárquicos, basado en la industria de la enseñanza y el aprendizaje. …

Consejos prácticos, ejemplos de la vida real, estudios de casos, y la oferta de recursos útiles perspectivas en profundidad sobre la estructuración y el fomento del aprendizaje socialmente atractivo en un entorno online….seran los que nos harán cambiar de una vez, que nos permitiran arriesgarnos y saber “estar” y vivir dentro de la incertidumbre, de una manera mucho más creativa que hasta ahora…

 

Sólo un ser humano realmente puede personalizar todo lo que él o ella lo hace. Es la era de la personalización, pero eso sólo significa ayudar a cada uno de nosotros para pasar menos tiempo en los detalles y más tiempo en las actividades humanas importantes, como la imaginación, la creatividad, el descubrimiento, la integración, la intuición, ..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

El mismo Pierson dice “Las evaluaciones se incrustan en las actividades de contenido y aprendizaje por lo que la instrucción y el aprendizaje no tiene que ser interrumpidos para determinar las áreas de progreso y desafío continuo. Mientras tanto, los algoritmos y las progresiones de aprendizaje integrados en el sistema van a ajustar en respuesta a las actividades de aprendizaje relacionadas del estudiante para permanecer en sintonía con sus ecosistemas de aprendizaje. Esta información también se proporciona al educador con opciones y recursos adicionales en tiempo real ya que el educador puede utilizarlo para apoyar al estudiante y su aprendizaje”

Como esta nueva tecnología comienza a tomar forma el diseño de otra sociedad ya que SUS MIMBRES son completamente nuevos a no como herramientas, metodologías…(innovacioned), sino un cambio “radical” en la concepción de la misma sociedad.

Algunos pensaran que en parte estamos en el APRENDIZAJE ADAPTATIVO, ya que nos basamos en los DATOS, pues no, lo hacemos así como una IDEA COMPLETAMENTE NUEVA, es decir, utilizamos DATOS, si, pero dentro del proceso personalizado de aprendizaje, por lo tanto se trata de algo completamente diferente.

Estos algoritmos de personalización (Rauch, Andrelczyk y Kusiak, 2007), recopilar información del usuario y analizan los datos para que pueda ser transmitida al usuario en momentos específicos (Venugopal, Srinivasa y Patnaik, 2009). Por ejemplo, cuando estoy terminado de ver un video en YouTube o una película en digitaly he aquí que presenté con una lista de recomendaciones sobre los géneros que acabo consumidas. Esta idea funciona de forma similar con algoritmos de personalización que sería capaz de recomendar cursos o avenidas de aprendizaje basado en el conocimiento previo alumnos o cursos completados.

Es nuestra responsabilidad en esta sociedad….

 -Aplicar las técnicas de minería de datos, aprendizaje automático y reconocimiento de patrones para los  conjuntos de datos estructurados y no estructurados.
-Diseño, desarrollo y prueba de algoritmos de aprendizaje y modelos de datos sobre el comportamiento humano para construir instrumentos de evaluación cognitiva
-Construir algoritmos personalizados para un motor de recomendación vía de desarrollo
-Los modelos de diseño para el desarrollo de aplicaciones nuevo juego
-Contribuir a la mejora de nuestros algoritmos.

Tambien nos podemos hacer una serie de preguntas que no vamos a obviar….y que nos ayudaran a entender mejor el por qué de las cosas…

¿El aprendizaje PERSONALIZADO tiene suficiente mejoría en el aprendizaje del aprendiz para justificar los costos de un sistema de aprendizaje más complejo?
¿Cómo podemos aprovechar algoritmos de aprendizaje automático “big data” y otros.. para la construcción de sistemas de aprendizaje personalizadas más eficientes y rentables?
¿Cómo pueden las ideas y resultados de la investigación de las ciencias cognitivas, utilizarlos para mejorar la eficacia de los sistemas de aprendizaje personalizados?.

 

 

 

 

En los ultimos tiempos se están dando  corrientes referentes al Big data y a a los Algoritmos (Inteligencia Artificial), los que predicen que significaran la “visualización” de una época con rayos y truenos, que nos tendra vigilados permanentemente ” Un artículo del periodista holandés Dimitri Tokmetzis demostró el año pasado hasta qué punto esto puede ir en los datos de montaje de retratos compuestos de lo que somos. Google sabe lo que busca y puede inferir no sólo qué tipo de noticias que lees en un domingo por la mañana y qué tipo de películas prefieres un viernes, qué tipo de porno que probablemente nos gustaría mirar y dejarnos boquiabiertos en la noche del sábado , lo que ha hecho que los bares y restaurantes cierren”….

La propuesta de Bentham para una Máquina total de la visibilidad puede ser menos significativa a la tesis de los universos de datos emergentes que sus contribuciones a la moral del utilitarismo y su supuesto de que se puede medir nuestro bienestar.

El panóptico es un tipo de arquitectura carcelaria ideada por el filósofo utilitarista Jeremy Bentham hacia fines del siglo XVIII. El objetivo de la estructura panóptica es permitir a su guardián, guarnecido en una torre central, observar a todos los prisioneros, recluidos en celdas individuales alrededor de la torre, sin que estos puedan saber si son observados”.

El efecto más importante del panóptico es inducir en el detenido un estado consciente y permanente de visibilidad que garantiza el funcionamiento automático del poder, sin que ese poder se esté ejerciendo de manera efectiva en cada momento, puesto que el prisionero no puede saber cuándo se le vigila y cuándo no”….

ste dispositivo debía crear así un «sentimiento de omnisciencia invisible» sobre los detenidos. El filósofo e historiador Michel Foucault, en su obra Vigilar y castigar (1975), estudió el modelo abstracto de una sociedad disciplinaria, inaugurando una larga serie de estudios sobre el dispositivo panóptico. «La moral reformada, la salud preservada, la industria vigorizada, la instrucción difundida, los cargos públicos disminuidos, la economía fortificada, todo gracias una simple idea arquitectónica.»Jeremy Bentham, Le Panoptique, 1780.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Este precio informativo se compone de DATOS ESTANDARIZADOS a través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La transformación es el cambio de una o muchas variables en el estudio.

Se transforman variables, por ejemplo, al remplazar los valores originales por logaritmos (transformación logarítmica). Frecuentemente los datos que son obtenidos no se ajustan a una distribución normal, por lo cual es inapropiado el ejecutar pruebas paramétricas

Muchas variables no se comportan de forma lineal o aritmética, por ejemplo las abundancias siguen un patrón exponencial.

En la educación básica se promueve que el sistema decimal es el único “natural”

Nunca vemos los algoritmos que hacen su trabajo, incluso a medida que nos afectan. Ellos producen en sus sistemas de cifrado, todo invisible, enterrado en cajas negras componer silencio sinfonías de ceros y unos….

Pierre Levy, el pensador de TUNEZ, propone una forma de procesar la información «codificandola» en algoritmos. Los humanos tenemos una habilidad muy especial, que es la de manipular símbolos. Y a lo largo de nuestra historia, cada mejora en esa habilidad ha producido cambios muy significativos a nivel económico, social, político, religioso, epistemológico, científico y educativo. Esos cambios, que trazan una evolución cultural, van desde los rituales y narrativas primigenios, la invención de la escritura, la creación de alfabetos y sistemas numéricos consensuados y permanentes, la fabricación de un artefacto tecnológico como la imprenta hasta arribar a la automatización de la reproducción en la difusión de símbolos.

Todos esos pasos aumentaron la posibilidad de almacenamiento de nuestra memoria, la expandieron, incrementaron la inteligencia colectiva y subieron un nivel en la escala evolutiva cultural.

En ese sentido, la propuesta de Lévy se aleja de la inteligencia artificial. La suya es una perspectiva completamente distinta: para él no se trata de crear máquinas inteligentes o más inteligentes que los humanos, sino de hacer a los humanos más inteligentes. Cada nivel de complejidad implica un tipo de conocimiento emergente nuevo y más poderoso, en el que todos los procesos cognitivos están aumentados. El último paso, es decir, aquel hacia el cual tendemos, sería el conocimiento algorítmico.

Y esa propuesta es la que hacemos nosotros (JUAN DOMINGO FARNOS https://juandomingofarnos.wordpress.com/…/algoritmos…/

 

 

INCLUSO DENTRO DE UN PROCESO transversal y multidisciplinar, para lograr nos lo eso, sino una autonomía en los aprendizajes y una personalizacion, como nunca hasta ahora se ha producido (POR TANTO TOTALMENTE ORIGINAL, apoyada en todo lo que les escribo, más las distintas potencialidades que tenemos de aprendizaje que tenemos las personas en nuestro cerebro y que les visualizo.

No podemos confundir la aplicación de los algoritmos en el aprendizaje personalizado (personalized learning), algunos lo llaman educación personalizada, aunque realmente está muy lejos uno de la otra, como realizar clases particulares, tal como hacen algunas escuelas de Nueva York,utiliza el análisis de aprendizaje para desarrollar en las matemáticas personalizadas programas de aprendizaje. La Escuela con algoritmos de aprendizaje realiza evaluaciones cotidianas de estilos de aprendizaje y matemáticas de los estudiantes, y lo hace para producir un aprendizaje “lista de reproducción” personalizado para cada alumno. Esta lista se compone de clases particulares de matemáticas, que se ponen en el orden en que el algoritmo determina que es óptimo para el desarrollo de las habilidades matemáticas de los estudiantes. Ciertamente, Escuela de uno se apresura a señalar que este está destinado a complementar, no sustituir, la experiencia de un maestro individual”..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformará en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico, pero siempre seremos nostros quienes elijamos en última instancia el camino que vaos a seguir, frente a las múltiples propuestas en “beta” que nos presentará la tecnología.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

Si partimos de la idea de que la REALIDAD es múltiple, podemos entender por qué aprender en la diversidad no tiene porque llevarnos a un punto común-….esta premisa es fundamental para entender el pensamiento crítico en los aprendizajes y sin la cuál sería imposible llevar a cabo aprendizajes basados en la diversidad-INCLUSIVIDAD (EXCELENCIA)…

…todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA, por medio de una mezcla de inteligencia artificial y algorítmica.

 

“Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese plantemaineto que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cual, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”.

 

juandon

 

FUENTES

Este es nuestro campo de trabajo de los ALGORITMOS CON EL PERSONALIZED LEARNING https://juandomingofarnos.wordpress.com/tag/algoritmos/  Juan Domingo Farnós Miró

Vagale, Vija “ERSONALIZATION OPPORTUNITIES IN THE MOODLESYSTEM” http://www.academia.edu/3275982/PERSONALIZATION_OPPORTUNITIES_IN_THE_MOODLE_SYSTEM

  1. Mobasher, “Minería de Datos para la personalización,” La Web Adaptativo: Métodos y Estrategias de Web Personalización, P. Brusilovsky, A. Kobsa, y W. Nejdl, eds., Pp. 1-46, Springer, 2007.

AI Schein, A. Popescul, y LH Ungar, “Métodos y métricas para arranque en frío Recomendaciones”, Proc. 25 de Ann. Int’l ACM SIGIR Conf. Investigación y Desarrollo en Recuperación de Información, pp. 253-260, 2002.

  1. McNee, J. Riedl, y JA Konstan, “Siendo precisa no es suficiente: Cómo métricas de precisión han herido de recomendación Systems,” Proc. ACM SIGCHI resúmenes sobre Factores Humanos en Sistemas Informáticos (CHI EA ’06), pp Extended. 1097-1101, 2006.

http://www.pearson.com.ar/pte.php
http://thenewinquiry.com/…/the-algorithm-and-the…/ The Algorithm and the Watchtower
By Colin Koopman
Vagale, Vija “ERSONALIZATION OPPORTUNITIES IN THE MOODLESYSTEM” http://www.academia.edu/…/PERSONALIZATION_OPPORTUNITIES…

 

Anuncios