Buscar

juandon. Innovación y conocimiento

La búsqueda del conocimiento en una Sociedad de la Inteligencia

Etiqueta

Inteligencia Artificial

El aprendizaje con tecnologías ya está cambiando.


 

29541972_10216585611019148_7208484725042416764_n

Los Chatbots AI están cambiando el aprendizaje móvil.

Los chatbots están transformando la forma en que las personas interactúan con sus dispositivos móviles, así como también la forma en que las compañías atienden a sus clientes. Están haciendo que las experiencias de los usuarios con dispositivos móviles sean más personales y sociales que nunca. Como resultado, estos chatbots están cambiando el aprendizaje móvil.

El aprendizaje móvil es aprendizaje que se lleva a cabo a través de dispositivos móviles como tabletas y teléfonos inteligentes. eLearning Industry informó que el 47 por ciento de las empresas usan dispositivos móviles en sus programas de capacitación.

El aprendizaje móvil es mucho más informal y social que el aprendizaje tradicional, y loschatbots aumentan este modo de aprendizaje para satisfacer las necesidades individuales de los estudiantes (posiblemente llegaremos al aprendizaje personalizado de una manera mucho más ágil) maximizando la experiencia de aprendizaje. Aquí hay algunas formas específicas y estratégicas en las que los chatbots están cambiando el aprendizaje móvil para mejor:

Los Chatbots guían a los alumnos en entornos simulados de aprendizaje móvil.( simulaciones https://juandomingofarnos.wordpress.com/…/simulaciones-mov…/ Simulaciones móviles de aprendizaje y trabajo! Juan Domingo Farnos Miro) (Educación Disruptiva) (El aprendizaje móvil también es cuestión de herramientas, ¿por qué los estudiantes aceptarán aprender con artilugios que las organizaciones educativas les impongan si ellos quieren las suyas propias para hacerlo?)

Ciertamente, la mayoría de los estudios de investigación que he leído en el tema de la participación de instituciones que compran una gran cantidad de idénticos dispositivos móviles (PDAs o iphones ipods, etc), están basadas en el modelo que utilizan para los ordenadores de escritorio, los cuáles los tiene instalados en un laboratorio de informática, y eso ni funciona pedagógicamente, ni les gusta a los aprendices que disponen de sus “locos cacharros” y que utilizan para casi todas las cosas más habituales.

También instruyen a las personas a lo largo de todo el proceso de aprendizaje, interactuando con ellas como haría un maestro. Proporcionan retroalimentación a los estudiantes que les ayuda a superar rápidamente los tropiezos en su viaje de aprendizaje, lo que les permite adquirir nuevas habilidades más rápidamente.
(https://juandomingofarnos.wordpress.com/…/la-retroalimenta…/ LA RETROALIMENTACIÓN DEBE HACERNOS PENSAR! Juan Domingo Farnos Miro) (No creo que la educación deje de ser tan garantista y si más abierta, diversa y masiva, eso es evidente, pero hay que acondicionar este TERRITORIO, para que no sea “hostil” de buenas a primeras y si acondicionado para establecer la diversidad de todos.

Qué los aprendices necesitan entrenamiento para dominar SU RETROALIMENTACIÓN, estarmos de acuerdo, pero debe hacerse de una manera “amigable”, libre y motivadora para ellos, nunca para nosotros, de esta manera su aclimatación, destrezas, creatividad…serán más rápidas y mejores, eso sin duda…)

“Los robots refuerzan (la) experiencia de aprendizaje al impartir información relevante a ciertos intervalos, en respuesta a diversos desencadenantes”, afirmó un colaborador de eLearning Industry. Esto mejora la experiencia de aprendizaje móvil e impulsa el aprendizaje a través del proceso de aprendizaje.

https://juandomingofarnos.wordpress.com/…/el-machine-learn…/ (El MACHINE LEARNING vs MOBILE LEARNING: medios para encumbrar el personalized/social learning en el nuevo paradigma…)

La necesidad de tener máquinas autónomas están en el corazón del movimiento de aprendizaje automático y del aprendizaje ubícuo en si mismo.

Podemos llegar con ello a anticiparnos a situaciones personalizadas ya que las posibilidades automáticas vs moviles, hace que las situaciones que hemos ideado con anterioridad se puedan implementar en cualquier espacio, tiempo y escenario, eso si, los beneficios de los mismos (MOBILE LEARNING AND MACHINE LEARNING, siemrpe dependeran de como se apliquen.
El aprendizaje móvil (o “m-learning”) ofrece muchas posibilidades tanto para aprendizaje mezclado como en línea aprovechando completamente aprendizaje sus beneficios en tiempo real y en espacio real (espacio físico) mezclada con la información digital y experiencias.

Muchos países en desarrollo están buscando tecnologías móviles que tiene el “potencial para ofrecer educación sin depender de una amplia infraestructura de comunicaciones que se adapte al contexto de los países en desarrollo. En algunos países en desarrollo, hay una fuerte base instalada de usuarios de teléfonos móviles que junto al aprendizaje autonmático les facilitaría no solo la parte humana de los mismos, si no también la económica.

Entonces, es importante considerar si el objeto será realizado solo en línea (como una aplicación-algoritmo-machine learning) o como una experiencia. El despliegue previsto o la ecología del mismo, será importante tener en cuenta antes de que el trabajo de desarrollo comience. Una vez que las decisiones importantes se han hecho, entonces el diseño puede entrar en la fase de desarrollo de contenido móvil. El objeto de aprendizaje puede entonces ser cargado y almacenado en un sistema de gestión, o en un servidor de aprendizaje / o en un curso o un sitio web. Desde allí, el objeto de aprendizaje se despliega. De manera óptima, el bucle de retroalimentación de los usuarios, puede informarles sobre el diseño o rediseño.

Los chatbots ofrecen más oportunidades para que los empleados se conecten con sus compañeros a través del dispositivo móvil, haciendo que el aprendizaje móvil sea más colaborativo, efectivo, social y productivo.

Los chatbots pueden enviar recordatorios a los estudiantes para interactuar con la capacitación a través de un dispositivo móvil. Esto puede aumentar la tasa de participación de los empleados en el entrenamiento.

Chatbots realiza un seguimiento del rendimiento y el progreso de los estudiantes móviles.

https://juandomingofarnos.wordpress.com/…/machine-learning…/ Machine learning: ¿personalized learning automatizado? Juan Domingo Farnós Miró

los sistemas Machine Learning representan un gran avance en el desarrollo de la inteligencia artificial, al imitar la forma en que aprende el cerebro humano -mediante la asignación de significado a la información y darnos más posibilidades de opción segun nuestros personalismos.

Figura-1-Marco-de-retroalimentacion-para-explicar-las-interacciones-recursivas-entre-la
El Machine learning identificará y categorizará las entradas repetitivas y utilizar la retroalimentación para fortalecer y mejorar su rendimiento. Es un proceso similar a cómo un niño aprende los nombres y la identidad de los animales, haciendo coincidir las palabras con las imágenes; el ordenador, poco a poco, aprende a procesar la información correctamente.
La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.

Los chatbots de IA son útiles para empresas, empleados y clientes. Afirmar que están transformando el aprendizaje móvil es insuficiente. Descubra más sobre el aprendizaje móvil en nuestro artículo de blog Mobile Learning Solutions: ¿Qué hay para la capacitación corporativa?

https://es.linkedin.com/…/mobile-learning-le-velocidad-del-… Mobile learning: le “velocidad” del aprendizaje del siglo XXI

Los beneficios clave de m-learning para la educación superior son:

• Exploración de las prácticas de enseñanza y aprendizaje innovadoras.• Habilitación de la realización del “aprendizaje auténtico” – es decir, facilitar en cualquier lugar,en cualquier momento, centrado en el alumno el aprendizaje.(ubicuidad)

• Involucrar a los estudiantes con las affordances de las tecnologías Web 2.0 móvil: conectividad, movilidad, geolocalización, redes sociales, podcasting personal y vodcasting, etc …

• Reducción de la brecha digital mediante el acceso a los contextos de aprendizaje y de usuario, herramientas de creación de contenidos que son asequibles y cada vez más propiedad de los estudiantes.

• Pasar de un modelo de fijo, la informática general dedicado a un móvil inalámbrico, paradigma informático que convierte cualquier espacio en un espacio potencial de aprendizaje.

Las tecnologías(aprendizaje móvil) m-learning ofrecen la posibilidad de participar en el aprendizaje, conversaciones entre estudiantes y profesores, entre pares estudiantiles, los estudiantes y expertos en el tema, y los estudiantes y ambientes auténticos dentro de cualquier contexto.

El aprendizaje tiene lugar no sólo en el aula o en el PC de casa: Las técnicas de aprendizaje móvil (m-learning) hacen posible que algunos años para aprender en otros lugares. Esto significa que, o bien como “tiempo de inactividad” irá utilizado para expandir sin importar la hora y el lugar del conocimiento de uno mismo. Las habilidades están situadas “en el sitio” adquirido aproximadamente a lugares históricos o excursiones. El aprendizaje móvil es compatible con la distribución de contenidos educativos y la comunicación con y. Entre los estudiantes por medio de dispositivos móviles y aplicaciones relacionadas

El aprendizaje móvil incluye todos los sistemas que permiten al alumno distribuido acceso a los datos y se comunican entre sí sin tener que depender de las redes eléctricas y de comunicación alámbricos (Karran, 2003) Los dispositivos móviles son portátiles, tienen su propia fuente de alimentación y la capacidad de comunicación inalámbrica.

Específicamente resuma los incluyendo, pero no limitado …

– Laptops,

-Tabletas

-Smartphones

…chatbots…

El aprendizaje no es ahora estático, localizado ; en cambio, el aprendizaje se extiende a contextos, experiencias e interacciones. No se trata sólo de una información jamming individuo en su cerebro; es inclusivo, social, participativo, flexible, creativo y de por vida. Una fracción de todo lo que he aprendido – una fracción muy pequeña – proviene de las aulas y a mi manera de ver las cosas, de manera residual, incluso habrá un momento que deberemos decidir si las aulas son necesarias, o no..

Espero que pronto tengamos el software necesario para analizar y decidir la retroalimentacion adecuada a cada aprendizaje a cada proceso de trabajo, incluso que nos pueda ayudar a decidir si optamos por seguir con el mismo, aunque sea con variaciones o por contra, cambiar radicalmente (disrupcion).

juand

Anuncios

la WEB 4.0, la relación entre contenidos-habilidades y competencias con el soporte de la Inteligencia artificial.

juandon

4369596653_fbaf5196a5_o

Los aprendices tienen diferentes opiniones acerca de lo que están aprendiendo y dilucidando .Por tanto la navegabilidad, la accesibilidad y la usabilidad…serán siempre elementos básicos para nuestros planteamientos disruptivos en la intervención asíncrona y sincrona de nuestras actuaciones en el aprendizaje.

Incluso lo que algunos ya llamamos WEB 4.0 …

La relación entre: Contenido – Habilidades – Competencias:

a-¿Qué pasa si el contenido se elimina y sólo se proporcionaron preguntas?

-Por lo tanto, los estudiantes proporcionarán evidencia de que su aprendizaje es el contenido

b-¿Cómo podemos crear líderes / solucionadores de problemas si seguimos proporcionando contenido?

-Quita los apoyos y ofrece opciones

c-¿Cómo usar las herramientas que se convierten en contenido?

-Para algunos estudiantes esto es absolutamente necesario se convierten en dependientes de una herramienta sin transferir datos

d-¿Cómo pueden las nuevas necesidades impulsar nuestro aprendizaje?

e-¿Somos perezosos porque la herramienta es intuitiva?

 

Algunas líneas fundamentales que se adaptan y trabajan con las computadoras afectan directamente a la formación intelectual de los estudiantes como:

a–estimular el interés por nuevos interés y la participación del sujeto individual a través de la interactividad continua;

b–estimular la imaginación; desarrollo del pensamiento lógico; individualización del aprendizaje activo, asegurando una retroalimentación constante.

A través de una colaboración continua, el intercambio de ideas y una buena dosis de coraje, estamos en el camino correcto para asegurar un cambio duradero en nuestra sociedad y en nuestra educación. Estoy emocionado de ver las ideas como éstas crecen y se transforman el futuro de la educación..

Para todo ello proponemos preguntas como:

a-Cuáles son las dimensiones interculturales clave a considerar en equipos distribuidos educativos?

b-¿Cómo dimensiones culturales y sus diferencias se refieren a las preferencias de los canales de comunicación y educación?

c-¿Cómo afecta el uso de estas herramientas de una cultura a otra y por qué?

d-¿Cuáles son los problemas típicos que surgen cuando los miembros de diferentes culturas tienen que trabajar juntos?

e-¿Qué tipo de herramientas y canales de comunicación deben estar disponibles para colaborar en línea?

La participación en los flujos de conocimiento puede generar nuevas ideas y prácticas y mejorar el rendimiento de una manera que también producen el aprendizaje y nuevas capacidades.

El FLUJO DE CONOCIMIENTOS y de APRENDIZAJES como algo natural en internet y de como de manera SEMÁNTICA, (Coincidiendo con el post de Pierre Levy: EML: A Project for a New Humanism. An interview with Pierre Lévy me pregunto ¿Cómo será el nuevo modelo y como será capaz de describir que nuestra forma de crear y transformar el significado, y que sea computable?….no tardará mucho, de eso podéis estar seguros… Juan Domingo Farnós).

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA, por medio de una mezcla de inteligencia artificial y algorítmica.

Esto generará automáticamente los ecosistemas de las ideas que serán navegables con todas sus relaciones semánticas. Seremos capaces de comparar diferentes ecosistemas de las ideas de acuerdo a nuestros datos y las diferentes formas de clasificarlos. Seremos capaz de elegir diferentes perspectivas y enfoques…..(personalized learning and Social Learning) (Juan Domingo Farnos Miro)

Vamos a ser capaces de analizar y manipular significado, y allí radica la esencia de las ciencias humanas.

No hay que olvidar que el sistema educativo computarizado estudiante y maestro son socios en el acto de conocer la relación más allá de los patrones convencionales silla de banco, incluso ahora y más mañana, el discente tomará las riendas de su aprendizaje y el docente le acompañará en el proceso….La relación es la comunicación más flexible y abierta con retroalimentación inmediata.

Las aptitudes para la empleabilidad y el futuro desarrollo profesional dependen de la aplicación y adaptabilidad a las nuevas habilidades / contenidos:

1-Las Competencias son un rango muy grande

2-A menudo tienen un resultado estrecho en otros contextos

3-Las nuevas competencias a menudo se basan en un proceso no un conjunto de habilidades

4-Restricciones: a menudo nos llevan por el camino por una empresa que ofrece contenido educativo

5-Microcredentialing – debe estar basado en habilidades porque son mensurables

En las organizaciones e instituciones basadas en competencias, un grupo de profesores colaborativo y capacitado, será básico en el impulso de la creatividad y responsabilidad de los aprendices en sus procesos de aprendizaje es el motor que impulsa el aprendizaje.

“La competencia es la capacidad de creación y producción autónoma, de conocer, actuar y transformar la realidad que nos rodea, ya sea personal, social, natural o simbólica, a través de un proceso de intercambio y comunicación con los demás y con los contenidos de la cultura”. (Chomsky).

Las competencias clave o básicas ayudan a definir qué es lo importante y al hacerlo, se alejan de forma clara de los llamados contenidos específicos disciplinares, ya sean máximos o mínimos.

 

Las competencias básicas, a diferencia de los contenidos específicos, son multifucionales pues permiten la realización y el desarrollo personal a lo largo de la vida, la inclusión y la participación como ciudadanos activos y el acceso a un puesto de trabajo en el mercado laboral:

a-Son trasferibles, a diferencia de los contenidos específicos, pues se aplican en múltiples situaciones y contextos para conseguir distintos objetivos, resolver situaciones o problemas variados y realizar diferentes tipos de trabajos.

Necesitaríamos una especie de arquitectura con diferentes capas capas , que consiste en una capa de presentación, una capa de middleware para procesos de transferencia de conocimientos y la gestión del conocimiento, y una capa de publicación de contenido:

a–El conocimiento es el resultado de la información (por ejemplo, contenido de aprendizaje) y la experiencia.

b-El conocimiento está directamente influenciada por la propia experiencia. Por lo tanto no hay tal cosa como la ” transferencia de conocimientos “.

El problema es que muchas organizaciones siguen teniendo una visión estática del conocimiento con estructuras compartimentadas poco abiertas a la colaboración en red, reduciendo así dramáticamente su capacidad para innovar (es decir, mejorar los procedimientos para conseguir ser mas eficaces y efectivos con respecto a los objetivos de nuestras acciones y servicios).

c–El rendimiento está tomando medidas en el conocimiento. Esto es lo que es evidente para otras personas en el lugar de trabajo. Ellos observan lo que hacemos. No es lo que sabemos que es importante para los demás, sino lo que hacemos con ella. En el lugar de trabajo, lo que hacemos con el conocimiento es por lo general en un contexto social. Esto influye en el tercer punto clave, que la reflexión de la actuación de uno es una parte importante del proceso de aprendizaje y esto es a menudo en un contexto social.

 

Aprender de lo que hacen otros es el fundamento de la teoría del aprendizaje social de Albert Bandura :

“El aprendizaje sería sumamente laborioso, por no hablar de peligroso, si la gente tenía que confiar únicamente en los efectos de sus propias acciones para informarles qué hacer. Afortunadamente, la mayor parte del comportamiento humano se aprende por observación a través del modelado: de los demás observando uno forma una idea de cómo se llevan a cabo nuevas conductas, y en ocasiones posteriores esta información codificada sirve como una guía para la acción “.

 

La combinación de consciente del contexto, la computación ubicua y omnipresente proporciona para entornos que son capaces de adaptarse a las diferentes identidades y necesidades de usuarios y organizaciones, un aprendizaje permanente, personalizado y adaptable.

El CONTEXTO, conforma ecosistemas de aprendizaje por si mismo.! (Juan Domingo Farnos)

Las organizciones, bajo estructuras muy diferentes a las actuales,llevarán a cabo sus actividades a través de una estructura distribuida que a menudo separa la gestión de la implementación en todo el mundo ya que se enfrentan a un mundo global.

Estos nuevos escenarios requieren la adopción de modelos de aprendizaje continuo y omnipresente, tanto de manera personal como social. Desde el punto de vista, el reto es gestionar en contra de la rápida obsolescencia de los conocimientos técnicos y dejar que los trabajadores-aprendices adquieren experiencia en nuevos temas “en el tiempo”.

 

Desde el punto de vista las personas que necesiten adquirir aprendizajes para mejorar en su trabajo deben adquirir la adopción de una innovación estratégica con el fin de aprovechar las nuevas tecnologías y garantizar el apoyo y la asistencia a un nivel de calidad cada vez mayor.

El anáisis que podemos realizar, no se basa solo en los datos, en las redes, sino en la sucesión de hechos en los lugares acotados por las diferentes culturas y sociedades, y “los no lugares”, como internet, espacios caóticos y no restringidos ni a las personas ni a las ideas, …., análisis que sirven para conseguir unos planteamientos ubícuos, inclusivos y que busquen lo mejor para cada uno de nosotros, no para cercenar alternativas que nos gusten o no, si no para poder entender que hasta los planteamientos más inquietantes, deben ser siempre vistos como un inicio, nunca como un finalque las verdades nunca son absolutas, si no relativas, que debemos siempre investigar, preguntar, cuestionar, nunca dar nada por hecho, aunque parezca un proceso acabado, el final de un camino significa el principio de otro.

 

Es en todo este “arco” de visiones diversas, donde la disrupción y su planteamiento abierto, diverso y constante, puede valer, puede influenciar en los futuros acontecimientos en aspectos sociales, económicos, educativos….

 

Estamos en presencia de una amplia gama de temas que deberían estar a disposición de una comunidad de aprendizaje grande (NODOS) con diferentes habilidades y objetivos de aprendizaje. La educación a distancia es una respuesta efectiva a esta demanda de flexibilidad en la formación, pero también debemos pensar en aprendizajes mixtos, en el life long learning, en el mobile learning…. El objetivo es construir una comunidad virtual de aprendizaje sobre la base de un modelo de conocimiento que responda adecuadamente a las diferentes necesidades de aprendizaje.

 

Aspectos de clasificación y reutilización de contenidos multimedia desempeñarán un papel fundamental en la mejora del medio ambiente.

Deberemos pensar y analizar las posibles innovaciones en la formación , y proponer el uso de un marco que integre todas las fuentes de información y ofrecer habilidades prácticas necesarias para satisfacer las nuevas necesidades.

Necesitaríamos una especie de arquitectura con diferentes capas , que consiste en una capa de presentación, una capa de middleware para procesos de transferencia de conocimientos y la gestión del conocimiento, y una capa de publicación de contenido.

La combinación consciente del CONTEXTO, la computación ubicua y omnipresente proporciona para entornos que son capaces de adaptarse a las diferentes identidades y necesidades de usuarios y organizaciones, un aprendizaje permanente, personalizado y adaptable.

Necesitaremos instalaciones que hagan posibles el u-aprendizaje consciente del contexto que se apoya por medio de dispositivos móviles, wereables , redes inalámbricas, sensores ….

Necesitaremos instalaciones que hagan posibles el u-aprendizaje consciente del contexto que se apoya por medio de dispositivos móviles, wereables , redes inalámbricas, sensores ….

Mediante el uso de u-learning se hace posible la creación de canales de comunicación ubicuas entre diferentes contextos de nuestra vida, que facilitan la creación de un marco de diálogo en todas partes dentro de la cual los aprendices, empresarios, facilitadores, tecnologías, recursos …podremos organizar UNA RUTA DE APRENDIZAJE-IMPLEMENTACIÓN, diversa pero adecuada a cada momento y circunstancia:

 

a-Son transversales e interdisciplinares a las áreas y materias curriculares porque su aprendizaje no es exclusivo de una de ellas.

b-Son integradoras, a diferencia de los contenidos específicos, porque combinan conocimientos (“saber”), destrezas (“hacer”) y actitudes (“querer”).

c-Y son dinámicas, porque competencia de las personas carece de límites en su crecimiento y se construye a lo largo de la vida.

Desde estas “señas de identidad”, cobra sentido el considerar que la enseñanza y el aprendizaje de las competencias básicas no se reduce al currículo pues hay otros ámbitos en la vida de los centros docentes que facilitan su desarrollo.

Necesidad de mantener el enfoque en el concepto no la herramienta

-¿Cómo medimos las competencias que son exclusivas y constantemente fluctuantes?:

a-Si no estamos reflexionando, iterando, fallando entonces no estamos realmente entendiendo la competencia

b-Los docentes van a necesitar ser capaces de recolectar evidencia en una variedad de maneras

c-¿Qué debe impulsar el cambio de competencias: currículo o evaluación? Debería reflejar el enfoque de diseño universal / diseño hacia atrás

d-Muchas de las nuevas evaluaciones estarán basadas en proyectos

e-Avanzar hacia un enfoque de portfolio –

f-Un mayor énfasis en la autoevaluación

g-Los mejores estudiantes ya pueden autoevaluarse

h-El tiempo es una limitación: muéstrame evidencia

Este viaje en el aprendizaje de las tecnologías (es decir, la naturaleza), las oportunidades pedagógicas (es decir, crianza), y las personas, las sociedades y culturas donde esto está sucediendo ahora! Algunos de nosotros creamos y publicamos con la tecnología Web 2.0,

En nuestro mundo en Red, en la Internet…, diferentes colectivos han trabajado por proveer contenidos tan propios como la diversidad y amplitud misma que abarca la red, en momentos en los que por factores históricos nos vemos llamados a usarla para aprender y compartir el producto cultural mas importante, el conocimiento.

La red no es como muchos la hacen ver una tecnología homogenizante de culturas, al contrario es una tecnología que permite la comparación, la diferencia y más aún la colaboración y el compartir transcultural, es por esto fundamentalque cada sociedad se prepare para hacer un buen uso de ella y no caer en lo que los de mercadeo han querido hacer: el gran centro comercial.

Lentamente se abre así un plano horizonte donde empiezan a irrumpir diferentes formas y manifestaciones que representan a los diversos grupos sociales, subculturas atentas, alertas y conscientes de la importancia de su participación en los nuevos ordenes geopolíticos. Colectivos que intentan a través de los medios de comunicación electrónicos moldear y preparar el terreno no precisamente para el comercio electrónico, sino para el intercambio de valores culturales.

El conocimiento es cada vez más sobre los flujos y redes en lugar de stocks (Seely Brown 2015). La potencia de aprendizaje permite al ser humano regular este flujo de energía e información con el tiempo, cómo una persona identifica, selecciona, recopila, manipula y responde a los datos de cualquier tipo – para lograr un fin que les importa.

Las personas son sistemas complejos en su propio derecho y poder de aprendizaje en un proceso encarnado y relacional: cerebro, mente y son interdependientes e interactúan con su entorno y su historia (Siegel 2010-2012), siguiendo una orientación hacia el riesgo y la incertidumbre, en la que uno está abierto y dispuesto a participar, evaluar y adaptar, en lugar de ser dependiente y frágil en la una mano o rígidamente persistentes en el otro (Deakin Crick, Huang et al 2015).

Existen muchas terapias para la incertidumbre.

Caballero, nos dice : “La incertidumbre es el riesgo de que no se puede medir, no se puede calcular. El riesgo es mensurable”…

La incertidumbre y la complejidad pueden darnos creatividad y motivación. (Anderson, Teresa: “La incertidumbre tiene múltiples caras de La creatividad es una forma de comportamiento adaptativo complejo y que tanto tiene que ver con la sociedad caótica de hoy.

En una red compleja se vive, se aprende… siempre en la incertidumbre. Vivir y aprender en una red por lo tanto requiere tolerancia a la incertidumbre.

La pura complejidad de la vida y la digitalización significa que la capacidad para aprender, identificar y adaptarse provechosamente en una abrumadora cantidad de flujos, de datos… en condiciones de riesgo, incertidumbre y desafío – es una habilidad crítica para la supervivencia humana y para el liderazgo. Para una organización, se deduce que los más interesados en todos los niveles están capaces de generar energía de aprendizaje, mayor será la sinergia de aprendizaje que surgirá en una organización….

 

Para llegar al apoyo en una infraestructura de aprendizaje que requiere una atención constante a los diferentes tipos de conocimientos y recursos de desarrollo:

a—Las relaciones personales y sociales necesarias para facilitar y líder en viajes de aprendizaje

b—Los arreglos organizacionales que apoyar viajes de aprendizaje como un modus operandi para la mejora

c—La arquitectura del espacio (virtual y consagrado) dentro del dominio relevante del servicio (es decir, la industria aeroespacial o competencia financiera).

d—La tecnologías y herramientas que apoyan los procesos de aprendizaje viaja a través de la retroalimentación rápida de los datos personales y organizacionales para estimular cambio, propósito de definición, estructuración y valor gestión del conocimiento.

e—El ecosistema de aprendizaje virtual que facilitar y mejorar las relaciones de aprendizaje participativo a través de los proyecto/s en todos los niveles: usuarios, profesionales e investigadores

f—La idea de un viaje de aprendizaje es sencilla e intuitiva. La metáfora facilita la comprensión del aprendizaje como un proceso dinámico. Sin embargo representa una transición fundamental en cómo entendemos el conocimiento, aprendizaje, identidad y valor. El conocimiento ya no es un ‘Stock’ que nos protegen y entregan a través de géneros y cánones relativamente fijos.

Ahora es un flujo en el cual participar y generar nuevos conocimientos, basándose en la intuición y experiencia. Sus géneros son fluidos y órdenes institucionales son menos valiosas (Seeley Brown 2015). Poder de aprendizaje es la forma en que regulamos ese flujo de energía e información con el tiempo en el servicio de un propósito de valor – más que una forma de recibir y recordar conocimientos experto.

La identidad de los millenials, se encuentra no en la propiedad y el control, pero en la creación, intercambio y remezcla – en la agencia, el impacto y el compromiso. Valor se genera en el movimiento entre el propósito y funcionamiento. Liderazgo es aprender juntos nuestro camino.

Sin embargo, en la nueva era de conocimiento intensivo, es cada vez más evidente que el conocimiento es muy complejo y tratar con el conocimiento no es reducible a cualquier secuencia de acciones y nos permite implementar otras acciones complejas que siempre nos permitirán un APRENDIZAJE PERSONALIZADO BASADO EN EL ERROR, entendido como DESAPRENDER, como el proceso de mejora de lo que hemos realizado o ser capaces de construir otro de nuevo y diferente…

.Cuando miramos a los requerimientos y desafíos mencionados se puede notar que un enfoque para la personalización si se transfieren con éxito en el campo de la educación, se ocuparía de una serie de las cuestiones hasta ahora nunca tratadas por el impedimento de las corporaciones dominantes.

La capacidad de proporcionar variedad permite adaptar el producto educativo a las necesidades derivadas de las diferencias entre los tipos de los estudiantes, el contexto y localidad.

La capacidad de proporcionar los costos de desarrollo aceptables utilizando este enfoque personalización podría dar una respuesta a los problemas actuales con modelos de negocios poco claros y altos costos de la adaptación.

La capacidad de proporcionar una calidad aceptable es un serio obstáculo para la aceptación actual de la REA. La capacidad de manejar este problema apoyaría firmemente la adopción de los REA.

Al seleccionar una unidad de aprendizaje como granularidad para el modelado del producto, disponible REA se puede reutilizar fácilmente en las ofertas. Lo que se necesita, aunque para aumentar el encontrabilidad son descripciones más detalladas, junto con el REA en los objetivos de aprendizaje, la pedagogía, el conocimiento previo requerido, y así sucesivamente.

Como también se ha mencionado en la introducción, se espera que la demanda de ofrecer aprendizaje personalizado no pare de crecer en la próxima década (Horn y Christensen, 2013). En esa situación, habrá una necesidad de un suministro de materiales de aprendizaje donde este suministro, se ajustara a la demanda individual de cada aprendiz. Cuando esta expectativa se hace realidad, la universidad no necesitara ofrecer titulaciones porque la formacion permanente se realizara de manera abierta inclusiva y ubicua en cualquier parte de la sociedad y con las gaarantias propias de la RESPONSABILIDAD EY EL COMPROMISO de cada uno de nosotros.

Crear el mejor “ajuste” tiene en cuenta tanto el aprendizaje de los aspectos de la tecnología (por ejemplo, la variación en los enfoques pedagógicos) y las variaciones de la organización (por ejemplo, que ofrecen tanto cursos en línea, de ritmo, y no de ritmo). Oportunidades para hacer realidad tales ofrendas se pueden mejorar mediante el uso de técnicas como el aprendizaje de análisis y desarrollos como la web semántica. Estas técnicas se pueden utilizar para añadir a propiedades de contexto relacionados de los materiales de aprendizaje, realizando así una mejor encontrabilidad para la REA y proporcionar un resultado final más adecuado para el usuario individual con costos relativamente bajos.

 

juandon

La inteligencia artificial y el pensamiento computacional, aceleran el posicionamiento de las TICs en la educación.

Juan Domingo Farnos

1 4Bc1nlpKnVko3WsbbMqVqw

 

 

 

 

 

 

 

 

Las tendencias actuales en aprendizaje automático, análisis de datos, aprendizaje profundo e inteligencia artificial, sin embargo, complican las cuentas psicológicas centradas en el ser humano sobre el aprendizaje. Las teorías de aprendizaje más influyentes de hoy son las que se aplican a cómo las computadoras “aprenden” de la “experiencia”, cómo los algoritmos están “entrenados” en selecciones de datos y cómo los ingenieros “enseñan” a sus máquinas a “comportarse” a través de “instrucciones” específicas.

Necesitamos planteamientos metodológicos, pero también y especialmente, estructurales, como señalamos en nuestras investigaciones para no solo innovar en la educación, si no para transformarla.( ejemplo:…)

“Las personas usan historias para organizar, expresar y recordar sus experiencias. Esta idea es el fundamento de un método desarrollado por Roger Schank y su equipo para diseñar cursos y materiales educativos que garanticen un aprendizaje mediante la práctica (learning by doing). ” Roger Schank

Estructuras de aprendizaje con  una arquitectura eficaz:

  • Un escenario: Situación profesional real y de negocio, simulada. Motivador y rico en contenidos, que proporciona un contexto coherente para el aprendizaje individual y colectivo.
  • Una secuencia planificada de tareas: Encuadradas en ese escenario, que permiten al participante ejercitar los comportamientos clave y, de esta manera, aprenderlos (práctica, entrenamiento).
  • Una colección estructurada de recursos para el aprendizaje: Incluyen procedimientos de trabajo, modelos a utilizar, herramientas, información relevante para la tarea, etc.
  • Acceso a un tutor: online o presencial, para obtener ayuda en el momento de aprendizaje preciso (feed-back).
  • Este engranaje se corresponde a las característivcas del E-learning-Inclusivo, diseñado por mi mismo, (Juan Domingo Farnos Miró) y que se recoge en estas bases  http://www.scribd.com/doc/33025056/Bases-Para-e-Learning-Inclusivo , pero con una trascendencia mayor, ya que quiere influir en todo el diseño de lo que entendemos por educación y formación e influir en decisiones político-educativas, sociales y tecnológicas, adaptándose de manera permanente, transparente y con confianza..a esta sociedad dinámica que gracias a las TIC, evolucionará a un riitmo muy diferente a lo que venía haciendo hasta ahora.

El uso de los miembros del equipo y los compañeros (peer to peer) es una gran manera de articular y hacer comentarios sobre las decisiones de diseño.

Aunque las comprobaciones de calidad por homólogos deben estar bien facilitadas para evitar posturas subjetivas , pueden ser un método ideal para explicar la comprensión de los problemas subyacentes, hechos y datos; el dominio del problema; las necesidades de los usuarios finales; y el razonamiento detrás de las decisiones que ha tomado.

Estas reuniones también pueden ser una manera de dejar que sus compañeros discuten los problemas y patrones similares se encontraron y resolvieron en otros proyectos.

 

 

 

 

 

 

 

Linux_kernel_INPUT_OUPUT_evdev_gem_USB_framebuffer.svg

 

 

 

Probar los flujos de pantalla en bruto y el diseño de interfaz de usuario temprana, y con frecuencia en el ciclo de los proyectos del usuario para validar el entendimiento y suposiciones acerca de las necesidades del negocio y de los usuarios finales. No tenga miedo de abrazar errores si descubre algunos problemas de experiencia de usuario más destacados con sus conceptos difíciles. Los usuarios finales pueden ofrecer información valiosa a través de los debates posteriores a las pruebas y entrevistas de seguimiento.
El desarrollo de nuevos métodos de resolución de problemas a través del aprendizaje basado en la práctica (PBL)

Por desgracia, experiencias en el aula y el desarrollo en el mundo real se realizan típicamente de forma independiente como si no hubiera necesidad de combinar la teoría con la práctica. El Aprendizaje basado en el trabajo, por el contrario (LEARNING IS THE WORK), se fusiona deliberadamente la teoría con la práctica y reconoce la intersección de formas explícitas y tácitas de conocimiento, tanto a nivel individual y colectivo.

Reconoce que el aprendizaje se adquiere en el medio de la práctica y puede ocurrir mientras se trabaja en las tareas y las relaciones en la mano. (Raelin, 1998)
La idea de aprendizaje a través de la práctica también se apoya en David Kolb y en el modelo de aprendizaje experiencial – hacer o experiencia, reflexionar sobre lo observado o aprendido, el desarrollo de las teorías internas generales sobre la aprendizaje, y aplicar el aprendizaje en experiencias futuras.

Kolb y Fry (1975) sostienen que el ciclo de aprendizaje puede comenzar en cualquiera de los cuatro puntos – y que lo que realmente debe ser abordado como una espiral continua. Sin embargo, se sugiere que el proceso de aprendizaje comienza a menudo con una persona que lleva a cabo una acción particular y luego ver el efecto de la acción en esta situación. (Smith, 2001, 2010)

Crítica del “Experiential Learning Circle” de Kolb y Fry (1975)

1. No presta suficiente atención al proceso de reflexión (Boud et al 1983)

2. Kolb y Fry hacen encajar el esquema con cuatro estilos de aprendizaje. Sin embargo, esta vinculación da como resultado un esquema demasiado cerrado e incompleto de los modos de aprendizaje. Se está priorizando un estilo particular de aprendizaje, pero el aprendizaje mediante experiencia no se aplica a todas las situaciones. Kolb deja al margen otras formas como la asimilación de información o memorización. (Jarvis 1987; Tennant 1997)

3. El modelo toma muy poco en cuenta la diferentes culturas en los relativo a condiciones, experiencias y estilos de comunicación. (Anderson 1988Anderson 1988)

4. La idea de etapas o pasos no encaja muy bien con la realidad del pensamiento. Como señaló Dewey (1933) numerosos procesos pueden ocurrir simultáneamente y las etapas pueden ser saltadas. Esta forma tan clara de presentar las cosas es demasiado simplista.

5. El respaldo empírico de la teoría es débil (Jarvis 1987; Tennant 1997). La base de la investigación inicial fue muy limitada y ha habido posteriormente muy pocos estudios sobre el tema.

6. La relación entre proceso de aprendizaje y conocimiento es problemática. La postura de Kolb es algo simplista y no tiene en cuenta las distintas posiciones en torno a la naturaleza del conocimiento.

      Jarvis también llama la atención sobre los diferentes usos del término, citando Weil y McGill (1989: 3) categorización de aprendizaje experiencial en cuatro “pueblos”: (Conferencia Internacional sobre Aprendizaje Experimental en Londres en 1987)

Pueblo Uno se preocupa sobre todo con la evaluación y la acreditación de aprender de la experiencia de vida y de trabajo ….

Aldea Dos se centra en el aprendizaje experimental como base para lograr un cambio en las estructuras … de la educación post-escolar ….

Aldea Tres enfatiza el aprendizaje experimental como base para la toma de conciencia de grupo ….

Village Four está preocupado por el crecimiento personal y la auto-conciencia.

Es importante que la investigación educativa se involucre en cómo algunas de sus preocupaciones centrales -aprendizaje, capacitación, experiencia, comportamiento, selección de currículos, enseñanza, instrucción y pedagogía- se están reelaborando y aplicando dentro del sector tecnológico. De alguna manera, podríamos decir que los ingenieros, los científicos de datos, los programadores y los diseñadores de algoritmos se están convirtiendo en los maestros más poderosos de hoy en día, ya que son máquinas que permiten aprender a hacer cosas que cambian radicalmente nuestras vidas cotidianas.

 

 

 

 

 

 

 

 

Programacion vs inteligencia artificial

 

 

Lo que hace que la programación ed-tecnología “adaptable” es que la IA evalúa la respuesta de un estudiante (por lo general a una pregunta de opción múltiple), luego sigue con la “segunda mejor” cuestión, cuyo objetivo es el nivel “adecuado” de dificultad. Esto no tiene por qué requerir un algoritmo especialmente complicado, y la idea en realidad basada en “la teoría de respuesta al ítem”, que se remonta a la década de 1950 y el ascenso de la psicometría. A pesar de las décadas siguientes, sinceramente, estos sistemas no se han vuelto terriblemente sofisticados, en gran parte debido a que tienden a basarse en pruebas de opción múltiple.

Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde la evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.

La tecnología abre nuevas formas radicales de la educación; romper barreras entre disciplinas impulsa nuevos campos creativos de la investigación y la invención; y poniendo el emprendimiento social en el centro de la misión de una universidad asegura pensadores brillantes jóvenes pueden llegar a ser nuestros más poderosos solucionadores de problemas.
A través de una colaboración continua, el intercambio de ideas y una buena dosis de coraje, estamos en el camino correcto para asegurar un cambio duradero en nuestra sociedad y en nuestra educación. Estoy emocionado de ver las ideas como éstas crecen y se transforman el futuro de la educación..
Para todo ello proponemos preguntas como:
          -Cuáles son las dimensiones interculturales clave a considerar en equipos distribuidos?
          -¿Cómo dimensiones culturales y sus diferencias se refieren a las preferencias de los canales de comunicación?
          -¿Cómo afecta el uso de estas herramientas de una cultura a otra y por qué?
           -¿Cuáles son los problemas típicos que surgen cuando los miembros de diferentes culturas tienen que trabajar juntos?
          -¿Qué tipo de herramientas y canales de comunicación deben estar disponibles para colaborar en línea?
La participación en los flujos de conocimiento puede generar nuevas ideas y prácticas y mejorar el rendimiento de una manera que también producen el aprendizaje y nuevas capacidades.
El FLUJO DE CONOCIMIENTOS y de APRENDIZAJES como algo natural en internet y de como de manera SEMÁNTICA,  (Coincidiendo con el post de Pierre Levy: EML: A Project for a New Humanism. An interview with Pierre Lévy me pregunto ¿Cómo será el nuevo modelo y como será capaz de describir que nuestra forma de crear y transformar el significado, y que sea computable?….no tardará mucho, de eso podéis estar seguros… Juan Domingo Farnós).Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA, por medio de una mezcla de inteligencia artificial y algorítmica.

Esto generará automáticamente los ecosistemas de las ideas que serán navegables con todas sus relaciones semánticas. Seremos capaces de comparar diferentes ecosistemas de las ideas de acuerdo a nuestros datos y las diferentes formas de clasificarlos. Seremos capaz de elegir diferentes perspectivas y enfoques…..(personalized learning and Social Learning)

Vamos a ser capaces de analizar y manipular significado, y allí radica la esencia de las ciencias humanas.

 

 

“Debemos saber un poco de la historia de la subida de los Sistemas Inteligentes de Tutoría, los problemas con el desarrollo de modelos de expertos, y los enfoques actuales como Knewton y Smart Sparrow. No he tenido la libertad de seguir las últimas novedades tanto como me gustaría, pero Donald dio una gran visión.

Se refirió a los sistemas de estar a punto de los contenidos de análisis automático y el desarrollo de aprendizaje en torno a ella. Mostró un ejemplo, y creó preguntas . También mostró cómo los sistemas pueden adaptarse individualmente al alumno, y discutió cómo podría ser capaz de proporcionar tutoría individual sin muchas limitaciones de los profesores (cognitiva sesgo, fatiga), y no sólo se puede personalizar, pero sí mejorar y escalar!

Uno de los problemas que encontró  a corto plazo era que la pregunta autogenerado fuera sobre el conocimiento y no sobre  habilidades. Si bien estoy de acuerdo que el conocimiento que se necesita , así como su aplicación, creo que centrarse  en este último primero es el camino a seguir.

Esto va junto con lo que Donald ha criticado con razón, como problemas con preguntas de opción múltiple. Señala cómo se utilizan en gran parte como prueba de conocimientos, y estoy de acuerdo que eso está mal, pero mientras hay situaciones prácticas mejores (léase: simulaciones / escenarios / juegos serios), se puede escribir de opción múltiple como mini-escenarios y obtener buenas prácticas . Sin embargo, es aún un problema de investigación interesante, para mí, para tratar de conseguir buenas preguntas de escenarios de contenido auto-análisis.

Se puede ir por un sistema híbrido, donde nos dividimos las funciones entre el ordenador y la intervención de las personas humanas sobre la base de lo que cada uno de nosotros hacemos bien, y me dijo que eso es lo que está viendo en las empresas.

La última parte que me interesaba era si y cómo tales sistemas podrían desarrollar no sólo el aprendizaje de habilidades, pero el meta-aprendizaje o de aprender a aprender. Profesores reales pueden desarrollar este y modificarlo (si bien es cierto y raro), y sin embargo, es probable que sea la mejor inversión. En mi aprendizaje basado en la actividad, le sugerí que poco a poco los alumnos deben hacerse cargo de la elección de sus actividades, a desarrollar su capacidad de convertirse en autodidactas. También le sugerí cómo podría ser en capas en la parte superior de experiencias regulares de aprendizaje. Creo que esto va a ser un área interesante para el desarrollo de experiencias de aprendizaje que son escalables, pero realmente desarrollan los estudiantes para los tiempos venideros.

 

 

 

 

 

 

 

images

 

 

Hay más: normas pedagógicas, modelos de contenido, modelos con alumnos, etc, pero finalmente estamos consiguiendo  ser capaces de construir este tipo de sistemas, y debemos ser conscientes de cuáles son las posibilidades”.

Con todo ello la personalización por las tecnologías digitales (algoritmos) sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y es aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

En los ultimos tiempos se están dando sos corrientes referentes al Big data y a a los Algoritmos (Inteligencia Artificial), los que predicen que significaran la “visualización” de una época con rayos y truenos, que nos tendra vigilados permanentemente ” Un artículo del periodista holandés Dimitri Tokmetzis demostró el año pasado hasta qué punto esto puede ir en los datos de montaje de retratos compuestos de lo que somos. Google sabe lo que busca y puede inferir no sólo qué tipo de noticias que lees en un domingo por la mañana y qué tipo de películas prefieres un viernes, qué tipo de porno que probablemente nos gustaría mirar y dejarnos boquiabiertos en la noche del sábado , lo que ha hecho que los bares y restaurantes cierren”….

La propuesta de Bentham para una Máquina total de la visibilidad puede ser menos significativa a la tesis de los universos de datos emergentes que sus contribuciones a la moral del utilitarismo y su supuesto de que se puede medir nuestro bienestar.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Con el trabajo algoritmico que preconizamos debemos tener siempre presente, tanto en las ideas, el desarrollo propio de andamiaje-algoritmico, así como en su posterior diseño, que deben ser capaces de analizar y llevar a cabo de manera pormenorizada y cuidadosa, conocer de que manera el aprendiz es capaz de aprender a aprender de manera personal y personalizada, por lo que estos siempre tendrán garantizado un apoyo inestimable.

Los aprendices, dentro de la educación formal de manera sistematizada, y en la informal, de manera generalizada… pueden beneficiarse de la orientación de los algoritmos que apuntan al aprendiz hacia los sistemas de tutoría en línea, por ejemplo, que están demostrando tan eficaz como tutores humanos.

Si como científicos de la cognición trabajamos en TI, una industria que actualmente tiene una gran necesidad de personas educadas que comprendan cómo las personas interactúan con la inteligencia artificial y los sistemas automatizados, como diseñadores de interacción, arquitectos de usabilidad, programadores, desarrolladores de sistemas, estrategias de poder o, después de algunos años, como administradores de proyectos.

Si aprendemos métodos para estudiar y moldear el pensamiento, la memoria y la acción tanto para los humanos como de las computadoras, la educación también te capacita para diseñar la interacción entre las personas y la tecnología.

En Inteligencia Artificial (AI) exploramos el pensamiento informático. En neurociencia, observamos lo que está sucediendo en el cerebro. Cuando conectamos lo que nos sucede con lo que sucede en una computadora, el pensamiento se convierte en un híbrido en el que nuestro pensamiento excede los límites entre psicología, cultura, biología y tecnología.

Se puede ir por un sistema híbrido, donde nos dividimos las funciones entre el ordenador y la intervención de las personas humanas sobre la base de lo que cada uno de nosotros hacemos bien, …

Tales sistemas podrían desarrollar no sólo el aprendizaje de habilidades, pero el meta-aprendizaje o de aprender a aprender. Profesores reales pueden desarrollar este y modificarlo (si bien es cierto y raro), y sin embargo, es probable que sea la mejor inversión. En mi aprendizaje basado en la actividad, le sugerí que poco a poco los alumnos deben hacerse cargo de la elección de sus actividades, a desarrollar su capacidad de convertirse en autodidactas. También le sugerí cómo podría ser en capas en la parte superior de experiencias regulares de aprendizaje. Creo que esto va a ser un área interesante para el desarrollo de experiencias de aprendizaje que son escalables, pero realmente desarrollan los estudiantes para los tiempos venideros.

Hay más: normas pedagógicas, modelos de contenido, modelos con alumnos, etc, pero finalmente estamos consiguiendo ser capaces de construir este tipo de sistemas, y debemos ser conscientes de cuáles son las posibilidades”.

Con todo ello la personalización por las tecnologías digitales (algoritmos) sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y es aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

En los ultimos tiempos se están dando sos corrientes referentes al Big data y a a los Algoritmos (Inteligencia Artificial), los que predicen que significaran la “visualización” de una época con rayos y truenos, que nos tendra vigilados permanentemente ” Un artículo del periodista holandés Dimitri Tokmetzis demostró el año pasado hasta qué punto esto puede ir en los datos de montaje de retratos compuestos de lo que somos. Google sabe lo que busca y puede inferir no sólo qué tipo de noticias que lees en un domingo por la mañana y qué tipo de películas prefieres un viernes, qué tipo de porno que probablemente nos gustaría mirar y dejarnos boquiabiertos en la noche del sábado , lo que ha hecho que los bares y restaurantes cierren”….

La propuesta de Bentham para una Máquina total de la visibilidad puede ser menos significativa a la tesis de los universos de datos emergentes que sus contribuciones a la moral del utilitarismo y su supuesto de que se puede medir nuestro bienestar.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)…., lo que nos conducirá a la resolución de problemas, tanto en sus procesos como en su evaluación:

Para ello utilizaremos el pensamiento computacional como un concepto de resolución de problemas. Es un pensamiento especial que nos permite comprender un problema complejo y desarrollar posibles soluciones. Soluciones que pueden presentarse de forma que un ser humano, una computadora o ambos puedan entender. Pero el pensamiento computacional se puede describir desde una comprensión muy estrecha o muy amplia.

 

 

 

 

images

 

 

 

 

 

En la comprensión estrecha, el pensamiento computacional contiene cuatro conceptos clave:

          a-Descomposición: que podría dividir un problema o sistema complejo en partes más pequeñas y manejables

          b-Reconocimiento de patrones — que se refiere a buscar algo uniforme alrededor y en un problema

          c-Abstracción: lo que significa centrarse en la información importante e ignorar detalles irrelevantes

          d-Algoritmos: se refiere al desarrollo de soluciones paso a paso para un problema o la preparación de reglas para resolver un problema

Las cuatro piedras angulares son igualmente importantes. Se pueden entender como estar en un taburete. Si falta uno, se produce un. cotocircuito en el procesoEl pensamiento computacional significa dominar estas cuatro técnicas.

Por lo tanto, el pensamiento computacional no es lo mismo que la programación. Tampoco es un concepto de pensar como una computadora, porque una computadora no puede pensar. Solo hace lo que el programa dice que debería hacer. Pero el pensamiento computacional puede permitirnos saber qué decir a la computadora para que realice una determinada acción. Sin embargo, las habilidades que se encuentran detrás del concepto de pensamiento computacional también se pueden usar en una serie de otras situaciones de resolución de problemas que no se relacionan con computadoras en absoluto. Ser capaz de simplificar un problema complejo para que podamos entenderlo fácilmente

En una comprensión más amplia del pensamiento computacional, el concepto se extiende a ambos contienen una cantidad de conceptos y enfoques.

Los cuatro conceptos clave se complementan con:

          1-Lógica — que se refiere a predecir y analizar acciones dadas

          2-Evaluación — en el entendimiento de poder evaluar y juzgar

Además, añade una descripción más detallada de los cuales se acerca al “pensador computacional” es el trabajo que se puede describir como una actividad persistente, la experimentación y leges para crear algo en cooperación con otros y está en curso mejoras y correcciones de errores basada de las experiencias que se están haciendo.

Una comprensión aún más amplia del Pensamiento Computacional debe contener requisitos estéticos y éticos en relación con las soluciones con las que se trabaja en relación con un problema determinado.

Si vamos a integrar el pensamiento computacional como un tema o como parte de la formación general, es importante que analicemos cómo entendemos el concepto.equiparando el pensamiento y la codificación computacionales. Las habilidades no se pueden lograr mediante simples tareas de codificación, son competencias que contienen los enfoques legendarios, experimentales e innovadores y las consideraciones estéticas y éticas.

 

 

 

Architecture_of_Spaun

 

 

 

 

 

Con ello debemos adquirir habilidades clave como:

          a-pensar cuantitativamente (tanto matemáticamente como estadísticamente);

          b-pensar algorítmicamente como una continuación del proceso de avance del pensamiento (iniciado durante sus días de escuela);

          c-pensar en términos de aprendizaje automático y predicción;

para participar en actividades de pensamiento de nivel superior en términos de representar los fenómenos / resultados observados en forma de modelos y luego simular.

Jeannette Wing acuñó el término pensamiento computacional en un artículo reciente del MCCA de 2006. . Ella argumenta que para que los estudiantes apliquen técnicas computacionales o aplicaciones informáticas a los problemas y proyectos en su disciplina particular (ya sean las artes, las ciencias, las humanidades o las ciencias sociales), este conjunto de habilidades se vuelve necesario. Wing también afirma en su artículo seminal que las ideas de abstracción, estratificación de abstracciones y automatización son algunos de los conceptos fundamentales de la informática que han proporcionado nuevos conocimientos sobre las ciencias naturales y las ciencias sociales duras.

Enfatiza que el pensamiento computacional es una habilidad básica emergente para todos, no solo para los informáticos. Por lo tanto, debe convertirse en una parte integral de la educación y agregarse a la capacidad analítica de cada alumno, además de las habilidades de lectura, escritura y aritmética. Al utilizar los conceptos fundamentales para la informática, el pensamiento computacional permite y mejora la capacidad de resolver problemas, diseñar sistemas y comprender el comportamiento humano (Wing, 2006).

Si parece que el tener presente como base la creacion de patrones para resolver problemas, no es menos cierto que la variedad de tareas y actividades actualizadas proporciona al estudiante la flexibilidad de elegir y repetir las tareas para aprender las técnicas a su propio ritmo. Esto le permite al alumno tener el control de todo el proceso de aprendizaje.

Podemos emplear como eje investigar, desarrollar y determinar la eficiencia del uso de un entorno b-learning en la adquisición de habilidades básicas de programación a través de la personalización del contenido para cada alumno, para lograr que un conjunto de actividades que se pueden utilizar se diseñen teniendo en cuenta diferentes niveles adaptados a la personalización de aprendizajes de cada alumno por medio de un de un pensamiento computacional que por medio del soporte del machine learning cree aplicaciones para cada estudiante. La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.

Se implementará un enfoque metodológico mixto para lograr los objetivos. El enfoque cuantitativo, cuyas características al utilizar fenómenos de medida estadística, la experimentación y el uso del análisis causa-efecto permiten un proceso secuencial, deductivo y de prueba para generar resultados. El enfoque cualitativo se lleva a cabo básicamente en entornos naturales y los significados se extraen de los datos que permiten un proceso que contextualiza el fenómeno y la profundidad de las ideas, mas, plenamente ya dentro del espacio de personalized learning con el pensamiento computacional y que a su vez nos ayudará a medir el nivel cognitivo de los estudiantes en el pensamiento computacional, los instrumentos se diseñarán en base al banco de elementos para contar con instrumentos fiables ( válidos (medidas de aprendizaje) y objetivos (se centra en el concepto a medir) que coinciden con los contenidos de cada proceso.

El resultado principal es generar una educación personalizada, una experiencia de aprendizaje que contribuya a la motivación del estudiante en sintonía con los objetivos académicos y su aplicación laboral.

 

 

 

 

personalized-learning-design-elements

 

 

 

 

Pero …

¿En qué parte de este proceso hay una oportunidad de mirar realmente fuera de nuestras paredes y ver qué está sucediendo en el mundo? Nuestras urgentes necesidades de aprendizaje no solo están ligadas a los datos finales sobre las prioridades de aprendizaje del pasado. A medida que el mundo cambia a un ritmo exponencial, ¿quién está determinando lo que nuestros estudiantes necesitarán para prosperar en ese mundo?

“Estar dispuestos a interrumpir constantemente nuestra mentalidad individual y colectiva, si queremos llegar a un acuerdo con las interrupciones necesarias que deben ocurrir en nuestras propias organizaciones si realmente queremos librarnos del pensamiento de status quo que a menudo nos entierra en las prácticas del pasado.

Ver cómo las ‘próximas’ prácticas también necesitan las ‘próximas’ métricas si queremos pivotar de manera efectiva hacia este futuro emergente y más deseable que visualizamos para nosotros y nuestras organizaciones “.

Las necesidades urgentes de aprendizaje de los estudiantes son personales. Cada niño, cada adulto en el sistema tiene necesidades personalizadas que no pueden ser determinadas por el pensamiento estandarizado.

Nuestro pensamiento, los profesores conectados, cuando tienen una comprensión profunda de las expectativas del plan de estudios, pueden diseñar un aprendizaje personalizado para cada niño / estudiante. Crear este entorno para nuestros alumnos requiere una base de pensamiento de conectividad. Los maestros deben poder acceder y participar en una red de apoyo, y usar esta red para apoyar las necesidades individuales de aprendizaje de cada estudiante.

¿Cómo apoyamos a los educadores a autodirigir su aprendizaje a través de sus propias redes de aprendizaje profesional?

“… no solo serán las personas las que tendrán que convertirse en aprendices adaptables, permanecer ágiles en nuestro mundo exponencialmente cambiante en el que vivimos ahora … también lo deben hacer nuestras organizaciones educativas si quieren seguir siendo centros importantes, dinámicos y relevantes de aprendizaje, innovación y transformación frente a estos cambios y cambios sísmicos “

 

 

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

Estos algoritmos de personalización (Rauch, Andrelczyk y Kusiak, 2007), recopilar información del usuario y analizan los datos para que pueda ser transmitida al usuario en momentos específicos (Venugopal, Srinivasa y Patnaik, 2009). Por ejemplo, cuando estoy terminado de ver un video en YouTube o una película en digitaly he aquí que presenté con una lista de recomendaciones sobre los géneros que acabo consumidas. Esta idea funciona de forma similar con algoritmos de personalización que sería capaz de recomendar cursos o avenidas de aprendizaje basado en el conocimiento previo de las personas intervinientes en el proceso de aprendizaje ABIERTO, INCLUSIVO Y UBICUO .

Además, en muchos escenarios distribuidos, nos gustaría que los agentes aprendan y optimicen sus políticas en tiempo real, lo que es casi imposible de lograr con modelos centralizados. Investigadores de la inteligencia artificial (IA), publicaron un documento en el que presentaron un método para lo que denominaron “Aprendizaje de refuerzo distribuido entre actores críticos”. algo así como un aprendizaje descentralizado ya que se dirige a las topologías que no solo se distribuyen sino que carecen de coordinadores centrales.
El principio de aprendizaje de similitud de tareas

Los escenarios de aprendizaje de refuerzo multi-agenteson, en términos prácticos, es una de las arquitecturas de aprendizaje profundo más complejas para implementar. La teoría de juegos, la programación distribuida y el aprendizaje no supervisado (LO QUE NOSOTROS HEMOS INVESTIGADO Y TRABAJADO DENTRO DE LOS NO LUGARES ( https://juandomingofarnos.wordpress.com/…/los-no-lugares-e…/ de Juan Domingo Farnos) chocan en los escenarios para crear un entorno increíblemente desafiante para los científicos y desarrolladores de datos.

Seran cientos de miles de nodos que pueden aprender varias tareas. En una topología centralizada típica, la complejidad de la arquitectura está dictada por dos factores inconexos: la cantidad de nodos y el número de tareas. A medida que se agregan más nodos a la red, la comunicación con el coordinador centralizado se vuelve más compleja. Como los agentes necesitan aprender nuevas tareas, el coordinador central se ve obligado a coordinar las políticas de aprendizaje a través de un número arbitrario de nodos en la red.

Podriamos llamar a este conocimiento el Principio de aprendizaje de similitud de tareas y puede conducir a modelos de optimización potentes en escenarios , con lo que asi, si que podemos DOCENTES Y ALUMNOS potenciar habilidades propias del siglo XXI y por tanto, por una parte entrar en dinamicas de aprendizaje FLEXIBLES, ABIERTAS, INCLUSIVAS y por otro entrar de lleno en lo que denominamos EDUCACIÓN DISRUPTICA, que nos que nos ayudara a construir esta nueva CULTURA que necesitamos para crear otros valores, escalables evidentemente y enriquecidos con las TIC, y por otra, llegar a todas las propuestas que queremos llevar a puerto.

El principio de aprendizaje de similitud de tareas básicamente significa que, si un agente de RL aprende una política de tareas específica, otros agentes en la red que realizan tareas similares pueden aprovechar esa política, por lo que antes necesitamos establecer otro PARADIGMA abierto a otros PARADIGMAS, que nos lo permitan, aprovechando esa idea, de estructura conectada en RED en el que hay rutas entre nodos que realizan tareas similares.

En ese NUEVO ESCENARIO, cada agente aprende de los datos recopilados y procesados realizaran su propia tarea (APR3ENDIZAJE AUTONOMO) … https://juandomingofarnos.wordpress.com/…/trrabajadores-de…/ Juan Domingo Farnos

 

 

 

 

 

 

 

 

 

las-lenguas-en-el-sistema-educativo-en-catalunya-presentacin-en-jaen-sedll-2010l-12-728

 

 

Luego intercambia los parámetros aprendidos con solo sus vecinos más cercanos, de modo que todos los agentes se beneficien de los procesos de aprendizaje de sus vecinos.

Entendemos pues que est DISEÑO DE ARQUITECTURA dispone de ANDAMIAJES COMPLETAMENTE DESCENTRALIZADOS reemplazando a un coordinador central con un gráfico conectado en el que los agentes aprenden de forma independiente y luego comparten algunos parámetros intermedios con sus vecinos 8EDUCACION PERSONALIZADA/SOCIALIZADORA dentro de un ambiente INCLUSIVO y por tanto con un VALOR AÑADIDO que entra de lleno en la comunidad.

Al comunicarse entre sí, los agentes cercanos tienden hacia el consenso. A medida que la información se difunde a través de la red, cada agente se beneficia del proceso de aprendizaje de cada uno de los otros agentes. Dado que los agentes solo pueden comunicarse con sus vecinos, la complejidad computacional y la sobrecarga de comunicación por agente aumentan linealmente con el número de vecinos en lugar del número total de agentes.

Los modelos de aprendizaje descentralizadosserán clave para implementar escenarios de aprendizaje reforzado a gran escala y la preimera premisa donde ubicar las nuevas HABILIDADES DEL SIGLO XXI y tambie´n la ayuda necesaria en el CAMBIO DE ROLES entre DOCENTES Y ALUMNOS, como nunca antes había sido posible.El surgimiento de tecnologías como blockchains y ledgers distribuidos, están contribuyendo a acercar el aprendizaje descentralizado y no controlado profundo a la realidad.

Entonces si estaremos dentro de una ecología del conocimiento , como un complejo, conocimiento intensivo del paisaje que emerge de la conexión de abajo hacia arriba Como sistemas adaptativos complejos, tiene una ecología de conocimiento propiedades emergentes, incluye entidades autogestionadas y puede evolucionar en formas que no podemos esperar o predecir.

Estas Ecologías del conocimiento desdibujan las fronteras del aprendizaje que se produce de manera ascendente y emergente, en lugar de aprendizaje que funciones dentro de un contexto estructurado, de un marco global, en forma de comando y de control.

Vamos a :

1. cuestionar, criticar y rechazar algunos aspectos de las prácticas aceptadas,
2. analizar la situación,
3. Construir de una nueva solución a la situación problemática,
4. examinar los procesos de aprendizaje de manera continuada.,
5. implementación de lo que vamos construyendo, pero sin miedo a volverlo a empezar de manera diferente,
6. reflexionar sobre y evaluar el proceso,
7. consolidar los resultados en una nueva práctica estable, pero teniendo en cuenta que nunca se basará en la certidumbre.

En general, utilizando la teoría de la actividad como un marco para el análisis de la actividad en ambientes de aprendizaje complejo tiene una limitación importante. El aprendizaje como una actividad compleja no puede ser capturada por un sistema global de la actividad (o incluso una red de sistemas de actividad) útil orientada a la consecución de un objetivo de la actividad. El aprendizaje es multifacético y dinámico, y las actividades en un ambiente de aprendizaje son borrosas, variadas, lo que hace muy difícil obtener una imagen completa de los sistemas de actividad bajo observación, que abarca, en términos de teoría de la actividad, un conjunto en evolución de los sujetos, objetos, mediación de artefactos, acciones, reglas, normas y división del trabajo. La solución a este problema es entender la actividad de aprendizaje desde la perspectiva del aprendiz.

Schunk (1991, ) destaca cinco preguntas definitivas para distinguir cada teoría de aprendizaje de los demás:

1. ¿cómo se produce el aprendizaje?
2. ¿Qué factores influyen el aprendizaje?
3- ¿cómo ocurre la transferencia?

¿Qué objetivos específicos alimentan el objetivo o la solución general? Los objetivos de aprendizaje, a partir de la síntesis de objetivos más pequeños, más centrados, pueden trazar un camino desde el nivel actual de habilidad o conocimiento al nivel deseado por los aprendices/alumnos/docentes.

 

No todos los objetivos de aprendizaje son útiles de la misma manera o destinados a la misma audiencia. En 2006, Will Thalheimer, presidente de Work-Learning Research, publicó una “Nueva Taxonomía para Objetivos de Aprendizaje”, que delinea cuatro tipos de objetivos de aprendizaje, cada uno con una función específica.

 

Estos son:

1-Objetivo de enfoque: guiar la atención de los alumnos hacia los aspectos más importantes del material de aprendizaje

2-Objetivo de rendimiento: Proporcionar a los alumnos una comprensión rápida de las competencias cubiertas en el material de aprendizaje

3-Objetivo de diseño instruccional: guiar el diseño y desarrollo de aprendizaje e instrucción

4-Objetivo de evaluación educativa: Guía para la evaluación de la instrucción
Los primeros dos están enfocados en el estudiante; generalmente se presentan a los estudiantes al comienzo de un curso de instrucción. Ellos distinguen entre lo que los estudiantes deben prestar atención (enfocarse en) y lo que realmente necesitan hacer con el nuevo conocimiento o habilidad (rendimiento). Están buscando identificaciones y otros en el diseño, desarrollo y evaluación del eLearning.

Es costumbre decirles a los estudiantes cuál es el enfoque y el rendimiento; a menudo, eLearning se abre con una pantalla que enumera los objetivos. Dirksen señala que solo proviene de la única o la mejor manera de lograrlo, y sugiere presentarlo con un desafío o una misión. Thalheimer señala una investigación que considera que las “preguntas previas” son al menos tan poderosas como los objetivos de aprendizaje al dirigir la atención de los alumnos hacia el material más importante.

El desafío será e promover el aprendizaje sin sacrificar el rendimiento a corto plazo. En equipos bien dirigidos-, un clima de apertura podría hacer más fácil para comunicar y tratar los errores en comparación con los equipos con las malas relaciones con los líderes o punitivos. Los buenos equipos, de acuerdo con esta interpretación,, aportarán más valor añadido…

Las personas que tendrán y tienen las ideas diferentes a las anteriores sociedades deberán convertirse en líderes de equipos que fomenten la discusión abierta, el ensayo y error, y la búsqueda de nuevas posibilidades en los pequeños grupos que influyen directamente. La otra tarea que tendrán sera trabajar duro para construir organizaciones que conducen a extraordinarias posiciones de trabajo en equipo y el aprendizaje en toda su extensión.

Normalmente y esto lo pueden ver en los estudios del profesor de LA UNIVERSIDAD DE HARVARD ( Amy Edmondson ), aquellos equipos que trabajan más de manera redárquica y comunicativa, siempre tienen más errores a corto plazo, pero a medio y largo plazo, el rendimiento se multiplica de manera exponencial.

(“brechas”). Las lagunas pueden ocurrir debido a falta de conocimiento o habilidades; estos son fácilmente llenados por materiales de instrucción. Pero la instrucción por sí sola no puede llenar las lagunas en la motivación, las brechas creadas por el hábito o los factores ambientales, o las que resultan de una mala comunicación.

 

 

 

 

 

images

 

 

 

 

 

 

 

Ahora los aprendices pueden tener acceso gratuito al contenido de múltiples fuentes a través de Internet. Pueden elegir alternativas, incluyendo interpretaciones, áreas de interés, e incluso fuentes de la acreditación. Tienen herramientas, tales como teléfonos móviles y cámaras de vídeo, para recopilar ejemplos y datos numéricos se pueden editar, almacenar y utilizar en el trabajo del estudiante. Por lo tanto, la estricta gestión de un plan de estudios preparado sobre la base de un contenido limitado elegido por el personal de entrenamiento se vuelve menos significativa. Por tanto, el énfasis se traslada a la decisión de lo que es importante o relevante, tanto en el material para las necesidades del estudiante o un estudiante individual.

 

Es probable que los estudiantes en una “clase” tendrán múltiples necesidades diferentes.(aprendizaje personalizado) En el marco de los objetivos de aprendizaje, los enfoques más flexibles para la selección del contenido, entrega, evaluación y otros factores comienzan a emerger. Algo igualmente importante es el desarrollo de los estudiantes que toman la responsabilidad de su propio aprendizaje, a ser abordado como una habilidad para enseñar y aprender.

Este enfoque se opone a la capacitación del personal para dar la espalda a la selección y transmisión de información en grandes bloques o partes (como es el caso en una exposición de un profesor de una hora) para guiar a los estudiantes y estudiantes para encontrar, analizar, evaluar y aplicar la información que es relevante para un tema específico.

La “relevancia” se convierte en negociable entre la formación del personal y los estudiantes. De hecho, el papel del intercambio de capacitación del personal en este contexto sea más que de una facilitación del personal, que tiene menos control sobre dónde y cómo tiene lugar el aprendizaje y que a menudo debe iniciar las negociaciones sobre cómo exactamente el contenido.

El Aprendizaje digital puede dejar una “huella” en la forma de contribuciones permanentes de los estudiantes en la discusión en línea y electrónica con PORTFOLIOS de trabajo con la recogida, almacenamiento y evaluación de las actividades de multimedia en línea «alumno o estudiante. ‘s de revisión por pares involucra a los estudiantes en el examen de su trabajo conjunto, proporcionando información valiosa que se puede utilizar para documentar la revisión y promover una mejor comprensión de los temas. (LA EVALUACIÓN ES RESPONSABILIDAD DE LOS APRENDICES y deja de ser solo un aprendizaje más a ser EL MISMO APRENDIZAJE.

Las analíticas de aprendizaje se desarrolla para que este estudiante monitoreo aprendizaje más fácil y escalable, como lo demuestran sus actividades digitales. Esta retroalimentación analítica provistos a los aprendices puede continuar durante todo el curso y dar lugar a un diagnóstico temprano que permita a los estudiantes a enfocarse en sus debilidades en algunas áreas , siendo la evaluación formativa y formadora, la verdadera evaluación. (LOS PROCESOS HAN SUPERADO LOS OBJETIVOS).

 

Realmente el mundo cada vez es mas complejo y los aprendizaje de cada aprendiz necesitan alejarse del “control” tipico, ya que “dentro” de las aulas se esta produciendo una “involucion educativa”, por lo menos en lo que se refiere a nuestro tiempo, pero eso si, aprender fuera de este escenario significa autoaprendizaje, autolideraje y coolaboracion diferenciada y diversa 8inclusividad), sin ello es imposible, ademas de entrar dentro de la dinamica de los datos y macrodatos analizados por medio de tecnologias automatizadas y algoritmos que poco a poco (por no decirlo crudamente, de una maner inmediata), van a ayudarnos a construir escenarios de aprendizaje personalizados y socializadores escalables y mutables.

 

 

Los docentes del siglo XXI, han de comprender que ya nunca más serán las”estrellas”, de la educación, que nunca más serán mejor que nadie…los docentes de la sociedad del conocimiento son aquellos que nunca saldrán “en la foto”, pero si que acompañarán a los alumnos en su aprendizaje, ya nunca serán “el pozo del conocimiento”, sino personas con las competencias necesarias de ayudar a los aprendices en su aprender a aprender…. (en la foto salen los aprendices, ellos son los protagonistas y los responsables de su vida)….

El Rol del Docente Tradicionalmente ha sido la figura de autoridad en el aula, desde el punto de la capacidad intelectual y del poder. El docente era visto como el depositario del conocimiento y su rol era el de llenar las mentes de sus alumnos con su conocimiento y entonces luego lograr que los alumnos regurgitaran este conocimiento en el proceso de evaluación. Esta es la forma en que muchos de nosotros fuimos enseñados y como en muchos casos algunos todavía enseñamos1 Después de todo, los alumnos son más fáciles de .controlar cuando están sentados en sus asientos, escuchando una clase expositiva,

En el proyecto de Enseñanza para la Comprensión, llevado a cabo por investigadores de Harvard, Wiske expone que el entorno de enseñanza tiene influencia sobre el rol de los docentes en la enseñanza y aprendizaje del conocimiento. “Muchos docentes de escuela trabajan en entornos que promueven la conducta de transmitir conocimiento a sus alumnos más que de construir y criticar el conocimiento con sus alumnos” (Wiske en Perkins 1995, p.204). 11contestando preguntas o completando cuestionarios escritos.

También es una forma rápida de recorrer el currículum y cubrir todas las unidades. De todos modos, la investigación muestra que el método de enseñanza tradicional no contribuye al aprendizaje efectivo, y no utiliza el potencial de la tecnología (Jonassen, Norton & Wiburg, Sandholtz, Ringstaff, & Dwyer, McCormick & Scrimshaw2). De hecho, muchos creen que una buena herramienta puede ser inútil si no es integrada dentro de estrategias efectivas de enseñanza. “No podemos enchufar a los alumnos a una herramienta de la mente (MindTool) y esperar que trabajen sin nuestra guía y apoyo…” (Jonassen, 2000, p.275-276).

De este modo, queda en el docente la decisión de pensar más allá de las formas tradicionales de enseñanza y de diseño de las clases y liderar experiencias de aprendizaje ricas en tecnología que apoyen el pensamiento basado en la indagación (inquiry-based thinking).

 

 

 

 

 

 

 

 

 

 

3

 

 

Un enfoque constructivista creará un escenario apropiado para este tipo de pensamiento. En una clase constructivista, los docentes tienen la responsabilidad de cubrir cuatro roles principales: Diseñador de Tecnología; Experto en Audiencia; Experto en Currículum; Experto en Proceso.

1. Diseñador de Tecnología Aunque los docentes no necesiten saber todas las opciones de una herramienta digital (cómo cambiar los colores, en qué botón hacer un clic para agregar una animación, etc.), sí necesitan entender el valor educativo de una herramienta digital o qué puntos fuertes presenta para influir positivamente en el aprendizaje. Necesitan saber de qué modo la tecnología puede ser usada para localizar las dificultades que los alumnos experimentan en relación al currículum. Si el objetivo de un docente es “enseñar tecnología”, el potencial de la tecnología queda sin verse. Y, probablemente, también se desaproveche la competencia central del docente.

Los docentes deben utilizar las habilidades que adquirieron luego de años de experiencia y ser diseñadores de experiencias de aprendizaje. Norton y Wilburg (2003) identifican a un docente diseñador como aquel que reconoce la centralidad de la planificación, estructuración, abastecimiento y orquestamiento

Podemos argumentar que cuando la tecnología es usada como un dispositivo efectivo, el rol del docente y del alumno continúa siendo el mismo. Cuando la tecnología es usada para extender el aprendizaje, el rol del docente como fuente de conocimiento es desplazado de alguna manera y comienza a tomar valor la independencia del alumno.

Cuando la tecnología es usada como un dispositivo transformativo, la diferencia entre docente y alumnos cambia, y toma importancia la comunidad de docentes y alumnos. 12del aprendizaje. Argumentan que el rol del docente es diseñar experiencias de aprendizaje que permitan a los alumnos utilizar la tecnología para resolver problemas, desarrollar conceptos, y apoyar el pensamiento crítico, antes que usar la tecnología para adquirir conocimiento fáctico. O dicho más directamente, los docentes necesitan crear actividades de aprendizaje que logren de sus alumnos aprendices activos, que utilicen la tecnología para desarrollar el conocimiento y la comprensión.

Una de las cosas principales que un docente debiera evitar es diseñar experiencias donde la tecnología haga algo para darle conocimiento a sus alumnos. Es importante que el diseño ubique a los alumnos en el control de la tecnología, no viceversa. Si los alumnos se convierten en sirvientes de la tecnología percibirán que la tecnología sabe algo que ellos no, la computadora es vista como algo “mágico” y no como una herramienta que puedan usar para poner al descubierto el conocimiento (Schwartz en Perkins, 1995).

Hay muchas consideraciones para hacer cuando se diseñan experiencias de aprendizaje enriquecidas con tecnología, cosas que requieren que el docente tenga en cuenta en su clase. Su expertise debe ser aplicada para diseñar y facilitar clases donde predomine el pensamiento, la creatividad, la reflexión, y no simplemente dónde y cuándo hacer clic. 2. Experto en Audiencia Otra competencia central que los docentes deben aportar a una clase donde se integra la tecnología, es el conocimiento de sus alumnos y sus distintas habilidades.

Específicamente, ¿cuáles son sus intereses y qué es lo que los motiva acerca del aprendizaje? Además, ¿en qué componentes del curriculum encuentran dificultades y qué nivel de andamiaje es necesario para acortar la brecha entre lo que actualmente saben y lo que necesitan comprender? Los docentes deben considerar cómo asignar distintos roles a sus alumnos para que revelen su potencial propio y sus conocimientos. Sandholtz, Ringstaff, y Dwyer (1997) encontraron que los docentes dieron cuenta de incrementos beneficiosos en la colaboración e interacción entre los alumnos cuando la tecnología era integrada en sus clases. “Aparentemente tanto docentes como alumnos pueden sacar provecho del conocimiento y expertise de algunos alumnos, expandiendo además de este modo cada vez más la participación de estos alumnos en clase”. 133. Experto en Curriculum

Es esencial que los docentes estén familiarizados profundamente con el curriculum, tanto en su contenido como en la concatenación de los mismos. Los docentes deben estar atentos a las comprensiones de sus alumnos así como también a los errores conceptuales, además de identificar aquellas áreas del curriculum donde los alumnos tengan una dificultad particular. Como expertos en curriculum, los docentes deben comprender cómo introducir efectivamente “trozos” del mismo que promuevan en los alumnos nuevas comprensiones.

El proyecto de Enseñanza para la Comprensión, llevado adelante por investigadores de Harvard, reveló dos rasgos recurrentes del curriculum que fomentan la comprensión (Wiske 1998). Uno es que el curriculum debe cumplir con las necesidades, intereses y experiencias de los alumnos. El segundo rasgo es que el curriculum debe lograr algo más que dar información, debe empujar a los alumnos a pensar en profundidad y a conectar las ideas con otras áreas de la indagación. Los investigadores de este proyecto apoyan la idea de la necesidad que el curriculum sea personalizado para grupos particulares de alumnos, y para asegurar la equidad y legitimidad a través del respeto a un curriculum estandarizado. Ellos creen que los docentes juegan un rol central en el modelado del curriculum para que cumpla con las necesidades y requerimientos de los alumnos.

 

 

 

 

Educación Tradicional Vs Educación Actual

 

 

 

 

 

El docente como experto en el curriculum debe sentirse libre para poder crear experiencias de aprendizaje constructivistas que cumplan los requerimientos del curriculum, y ser capaces de considerar dónde es apropiado integrar la tecnología para promover la comprensión.

Expero en Proceso Es un gran desafío el poder lograr procesos y estrategias de enseñanza efectivos para una clase constructivista, que requiera de prueba y error y posterior reflexión.

En una clase constructivista, el docente no es simplemente quien les dice a los alumnos lo que deben saber. Es, en cambio, quien debe ayudar al alumnos a articular lo que deben saber y cómo lograr saberlo y cada vez mejor. El docente es un facilitador, un coach, y un mentor cognitivo. Cambian el rol desde uno central donde deben modelar la situación problemática a resolver, hasta un rol periférico donde deben alentar a los alumnos a interactuar entre ellos y a construir su propio conocimiento

Los docentes pueden mostrar a sus alumnos vías para descubrir qué es lo que no saben y utilizar nuevo conocimiento para resolver el problema. De esta manera, el docente está modelando su propio proceso de pensamiento. También aquí podemos hablar de las decisiones acerca del uso apropiado de la tecnología.

Es importante que los docentes puedan exponer a sus alumnos a una variedad de tecnologías que sean apropiadas para cada caso, y que ilustren las bases para decidir dónde y cuándo implementar determinada herramienta tecnológica. Este modelo pone al descubierto cierto tipo de creencias erróneas acerca de que la tecnología ayuda a los alumnos a ser consumidores inteligentes de tecnología. Quizás como muchos docentes ya lo han experimentado, hay una rutina logística a llevar a cabo en la planificación del uso de la tecnología en el aula.

Quizás haya que reservar un espacio determinado, cargar determinado software, reservar equipamiento, etc. Bastante a menudo además, alguna parte de la tecnología falla o no se comporta del modo esperado. Burbules y Callister (2000) lo dicen: “el potencial de las nuevas tecnologías incrementa la necesidad de ser creativos, de planificar cuidadosamente y de enfrentarse a nuevos e inesperados desafíos”.

El Rol del Alumno así como el rol del docente debe cambiar en las aulas en las que se integran tecnologías, el rol del estudiante también. Los estudiantes necesitarán tomar dos roles importantes: deberán ser aprendices activos y consumidores inteligentes de tecnología.

1. Aprendices activos Los estudiantes no pueden seguir siendo receptores pasivos de información. En una enseñanza constructivista se espera que se involucren activamente y sean responsables de su propio aprendizaje.

Necesitan estar motivados en la construcción de conocimiento y deseosos de incursionar en el conocimiento compartido por sus compañeros de clase. El estudiante, no el docente, se transforma en el foco del proceso de aprendizaje. Algunos docentes son escépticos con respecto a la habilidad de los estudiantes para asumir un rol central en su propio aprendizaje.

 

 

Probablemente recuerden visiones de los estudiantes salteándose las clases o copiándose la tarea. También los docentes pueden recordar aquellos estudiantes que generalmente completan toda la tarea que se les ha 15asignado, pero por el simple hecho de finalizarla, no con el fin de desarrollar o profundizar su comprensión. Estas estrategias minimalistas que apuestan a combatir el sistema no funcionan en un contexto constructivista ya que la construcción del conocimiento es mucho más importante que la transmisión del mismo. Los docentes se preocuparían por el posible fracaso de los estudiantes, si se les pidiera que tuvieran que asumir la responsabilidad por su propio aprendizaje.

En el proyecto ACOT los investigadores observaron que inicialmente, los estudiantes no estaban habituados a pedir ayuda a sus pares pero que rápidamente prefirieron aquellos métodos de enseñanza que requerían una participación activa en vez de pasiva. A medida que los estudiantes tuvieron una mayor responsabilidad en su aprendizaje, se sintieron más dueños de este proceso

2. Consumidores “inteligentes” de tecnología Burbules y Callister (2000) nos recuerdan que los estudiantes deben ser reflexivos y críticos acerca de la tecnología, y deben estar preparados para la posibilidad de que los beneficios obtenidos de la tecnología puedan estar atenuados por los problemas imprevistos y las dificultades que se crean por su uso. Es importante que los estudiantes puedan ver que hay ocasiones en que la tecnología es útil y otras en que no lo es. En resumen, el estudiante es responsable en tomar una decisión crítica de cuándo y si la tecnología debe ser utilizada. Sería aún más beneficioso si también pudieran determinar qué tecnología sería más efectiva para promover comprensión.Conclusión La tecnología es un recurso poderoso que puede tener un gran impacto en la comprensión. El simple hecho de integrar tecnología en la clase crea nuevas condiciones para enseñar y aprender, forzando a alumnos y docentes a abordar la enseñanza y el aprendizaje de una manera diferente.

Sin embargo, si la diferencia produce un nivel alto o profundo de comprensión depende de la pedagogía que se utilice. La pedagogía tradicional ha probado ser un método ineficaz. Los estudiantes simplemente aprenden a realizar sus trabajos rápidamente y a repetir la información en una prueba. Una pedagogía constructivista crea la mejor posibilidad para lograr un aprendizaje significativo.

El aprendizaje basado en la indagación, centrado en el alumno, crea un escenario activo y reflexivo para desarrollar comprensiones profundas. Es inteligente y responsable el explotar los puntos de influencia de la tecnología para localizar áreas de dificultad en el currículum.. Los docentes y los alumnos deberán asumir nuevos roles y nuevas responsabilidades en una clase que integra tecnología con una pedagogía constructivista, pero los beneficios educativos son prometedores.

“Los nuevos docentes están convencidos de las ventajas de incluir dispositivos como los celulares y el uso de internet en la escuela”, asegura Craig, y afirmó además que “los docentes antes eran los dueños del saber y ahora ya no, está en internet”. Diego Craig

Una de las implicaciones de usar las herramientas Web 2.0 en la educación es el aprender ya no como una experiencia individual, tal como lo planteaban las teorías de aprendizaje más tradicionales, sino a través de la formación de conexiones e interacciones (conectivismo) a través de sistemas abiertos. Esto último permite el desarrollo de competencias mediante la experiencia de otras personas, el mantenerse actualizado mediante la diversidad de opiniones, etc.
Ello también implica el cambiar el paradigma de que tener el conocimiento es lo importante, sino que ahora el saber aprender será más valioso.

¿Cuál es el lugar de la tecnología en la educación? Muchos docentes, al considerar la integración de la tecnología en sus prácticas, se preguntan dónde se insertaría ésta en sus contextos educativos. Algunos pueden sentir que integrar la tecnología al ya recargado currículum es como tratar de copiar una página en una fotocopiadora que tiene papel atascado. Otros se preguntan si sus habilidades tecnológicas les permitirán llevar adelante una clase donde integren tecnología.

 

 

 

 

 

 

caracteristicas-rol-docenteestudiante-1-728

 

 

 

 

¿El aprendizaje PERSONALIZADO tiene suficiente mejoría en el aprendizaje del aprendiz para justificar los costos de un sistema de aprendizaje más complejo?
¿Cómo podemos aprovechar algoritmos de aprendizaje automático “big data” y otros.. para la construcción de sistemas de aprendizaje personalizadas más eficientes y rentables?
¿Cómo pueden las ideas y resultados de la investigación de las ciencias cognitivas, utilizarlos para mejorar la eficacia de los sistemas de aprendizaje personalizados?.

En este sentido, los sistemas Machine Learning representan un gran avance en el desarrollo de la inteligencia artificial, al imitar la forma en que aprende el cerebro humano -mediante la asignación de significado a la información y darnos más posibilidades de opción según nuestros personalismos.El Machine learning identificará y categorizará las entradas repetitivas y utilizar la retroalimentación para fortalecer y mejorar su rendimiento. Es un proceso similar a cómo un niño aprende los nombres y la identidad de los animales, haciendo coincidir las palabras con las imágenes; el ordenador, poco a poco, aprende a procesar la información correctamente.

La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.

“Sin entrar en detalles complejos sobre los diferentes paradigmas de Inteligencia Artificial y su evolución podemos dividir dos grandes grupos: la IA robusta y la IA aplicada.

  • Inteligencia Artificial robusta o Strong AI: trata sobre una inteligencia real en el que las máquinas tienen similar capacidad cognitiva que los humanos, algo que, como los expertos se aventuran a predecir, aún quedan años para alcanzar. Digamos que esta es la Inteligencia de la que soñaban los pioneros del tema con sus vetustas válvulas.
  • Inteligencia Artificial aplicada Weak AI (Narrow AI o Applied AI): aquí es donde entran el uso que hacemos a través de algoritmos y aprendizaje guiado con el Machine Learning y el Deep Learning.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo. Los programadores deben perfeccionar algoritmos que especifiquen un conjunto de variables para ser lo más precisos posibles en una tarea en concreto. La máquina es entrenada utilizando una gran cantidad de datos dando la oportunidad a los algoritmos a ser perfeccionados.

Coincidiendo con el post de Pierre Levy: EML: A Project for a New Humanism. An interview with Pierre Lévy me pregunto ¿Cómo será el nuevo modelo y como será capaz de describir que nuestra forma de crear y transformar el significado, y que sea computable?….no tardará mucho, de eso podeis estar seguros.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

La gente tiene que aceptar su responsabilidad personal y colectiva. Porque cada vez que creamos un vínculo, cada vez que “al igual que” algo, cada vez que creamos un hashtag, cada vez que compremos un libro en Amazon, y así sucesivamente,… que transformemos la estructura relacional de la memoria comúny eso lleva, como venimos diciendo siempre, una responsabilidad y un compromiso.

Por lo tanto, también tenemos que desarrollar el PENSAMIENTO CRÍTICO Todo lo que encontremos en el Internet es la expresión de puntos de vista particulares, que no son ni neutrales ni objetivos, sino una expresión de subjetividades activas. ¿De dónde viene el dinero? ¿De dónde proceden las ideas? ¿Qué es el contexto pragmático del autor? etcétera…

Este precio informativo se compone de DATOS ESTANDARIZADOS a través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La transformación es el cambio de una o muchas variables en el estudio.

Se transforman variables, por ejemplo, al remplazar los valores originales por logaritmos (transformación logarítmica). Frecuentemente los datos que son obtenidos no se ajustan a una distribución normal, por lo cual es inapropiado el ejecutar pruebas paramétricas

Muchas variables no se comportan de forma lineal o aritmética, por ejemplo las abundancias siguen un patrón exponencial.

En la educación básica se promueve que el sistema decimal es el único “natural”

Nunca vemos los algoritmos que hacen su trabajo, incluso a medida que nos afectan. Ellos producen en sus sistemas de cifrado, todo invisible, enterrado en cajas negras componer silencio sinfonías de ceros y unos….

El sueño de entregar el aprendizaje personalizado utilizando objetos de aprendizaje que se ajusta al tiempo real, en cualquier lugar, en cualquier momento, justo suficientes necesidades del estudiante está a punto de convertirse en una realidad. Hoy en día, junto con muchos desarrollos importantes en la psicología de la instrucción, estándares abiertos, lenguajes de marcas estructuradas para la representación de datos interoperables, y el cambio de control de flujo de instrucción desde el cliente al servidor, una base totalmente nueva está haciendo realmente personalizado de aprendizaje en línea .

“Poco a poco las características subversivas de la computadora fueron erosionados distancia: En lugar de cortar a través y así desafiar la idea misma de fronteras temáticas, el equipo ahora se define un nuevo tema; en lugar de cambiar el énfasis del currículo impersonal a la exploración en vivo emocionados por los estudiantes, el ordenador se utiliza ahora para reforzar los caminos de la escuela. Lo que había comenzado como un instrumento subversivo de cambio fue neutralizado por el sistema y se convierte en un instrumento de consolidación”..… Audrey Watters

Lo que hace que la programación ed-tecnología “adaptable” es que la IA evalúa la respuesta de un estudiante (por lo general a una pregunta de opción múltiple), luego sigue con la “segunda mejor” cuestión, cuyo objetivo es el nivel “adecuado” de dificultad. Esto no tiene por qué requerir un algoritmo especialmente complicado, y la idea en realidad basada en “la teoría de respuesta al ítem”, que se remonta a la década de 1950 y el ascenso de la psicometría. A pesar de las décadas siguientes, sinceramente, estos sistemas no se han vuelto terriblemente sofisticados, en gran parte debido a que tienden a basarse en pruebas de opción múltiple.

Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde la evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.

https://juandomingofarnos.wordpress.com/…/los…/Los algoritmos sales de las Universidades de Juan Domingo Farnós Miró

 

 

 

 

 

 

 

 

 

aspectosdeldiseno

 

 

 

 

 

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Las diferencias de poder y las cuestiones de desigualdad con los aprendices deben ser tomadas en serio en todos los contextos. Por otra parte, el grado en que el aprendizaje es emancipador u opresivo depende al menos tanto o más en los contextos organizacionales, sociales, culturales, económicos y con políticas más amplias en las que el aprendizaje tenga su sede, como en las prácticas reales de aprendizaje y pedagogías involucradas.

La eficacia de la circulación de información entre pares sugiere, por el contrario, que la participación en la práctica, en lugar de ser su objeto, bien puede ser la condición para la efectividad del aprendizaje “. (Lave y Wenger):

          1-La certeza y la estructura da una sensación de seguridad y tranquilidad. La incertidumbre es una enfermedad, según muchos terapeutas.

2. ¿Cuáles son los retos para el docente y para el estudiante? ¿Qué tan preparados están para afrontar los cambios en la educación? 

En la sociedad de hoy hay dos coneptos que o confundimos o no asimilamos, …la digitalización informatizada es un proceso técnico, mientras que la digitalización social es un proceso humano que en este caso implica una profunda revolución sociotécnica, todo ello nos lleva a otra sociedad, e aplica al proceso de interiorización personal y de coherencia social de las funcionalidades y efectos múltiples, directos, secundarios y hasta ocultos de esta tecnología.

Su socialización, cuyo resultado es la Sociedad de la Información, es un factor engañoso de progreso, si no está dirigido por una cultura madura de la tecnología, a la que podríamos denominar sociotecnocultura y que representa un objetivo educativo por el que luchar.

Entre las medidas necesarias para comprender mejor la dinámica de esta revolución sociotécnica que vivimos habría que completar la formación en muchas especialidades con dosis adecuadas de interdisciplinariedad, generalizar la práctica del sistemismo diversificado (inclusividad socio.educativa, por ejemplo) y del pensamiento complejo y crear, para difundirlo, un repertorio básico de conceptos sociotecnoculturales…y para ello necesitamos tecnologías inmersivas o no, pero al fin y al cabo las herramientas y los instrumentos siempre han sido utilizados por todas las sociedades.

Por supuesto, por ello tenemos lo que Saez Vacas llama TECNOLOGÍA DE LA INTELIGENCIA, que podemos entender como aquellas creaciones técnicas que no van dirigidas a producir cosas, sino a permitir que el cerebro humano se organice y funcione de manera distinta, es decir… no solo el SOFTWARE es un elemento básico dentro de la sociedad, si no por encima de ello está nuestra capacidad y mentalidad cognitiva de aceptar que estamos en una época cuya idiosincrasia hace que las tecnologías formen parte de nosotros, es más, que las consideremos en nosotros…

Las tecnologías convergentes, internet, la inteligencia artificial, la memoria externa….serán básicas en los próximos tiempos y no ya como tendencias, si no como elementos básicos que trascenderán mucho más de lo que la mayoría de la gente piensa, llegará el momento que ellas condicionarán nuestros actos, como ya lo están haciendo en parte ahora: “trate usted de sacar un billete de avión que no sea por medio de internet” Juan Domingo Farnos

Girar suavemente la noción de competencia”: la distinción entre las habilidades (elemental para realizar operaciones), contenido (será en lo que se ejercita la capacidad) y la novedad en comparación con el punto anterior, el contexto (las condiciones en que practicamos las operaciones y toma significado producciones).
El plan respaldado por capacidades y contenido crece y se materializa en un volumen tridimensional que la tercera dimensión es el contexto (una figura más tarde ayudará a imaginar que estas tres dimensiones).

¿Puede el campo de la investigación educativa científico social explicar cómo sus preocupaciones principales escaparon del aula y entraron en el laboratorio de programación y, recursivamente, cómo las “máquinas de aprendizaje” técnicas están reingresando a las aulas y otros entornos de aprendizaje digitalizados?

Los procesos de aprendizaje automático no humano, y sus efectos en el mundo, deberían ser objeto de escrutinio si se quiere que el campo de la investigación educativa tenga voz para intervenir en la revolución de los datos. Si bien la investigación educativa desde diferentes perspectivas disciplinarias ha luchado durante mucho tiempo sobre las formas en que el “aprendizaje” se conceptualiza y entiende como un proceso humano, también debemos comprender mejor el aprendizaje no humano que ocurre en las máquinas. Esto es especialmente importante ya que las máquinas que se diseñaron para aprender desempeñan un papel de “pedagogía pública” en las sociedades contemporáneas y también se están impulsando en los esfuerzos comerciales y políticos para reformar los sistemas educativos a gran escala.

Una de las grandes historias de tecnología de los últimos meses se refiere a DeepMind, la empresa de inteligencia artificial propiedad de Google, pionera en el aprendizaje automático de próxima generación y las técnicas de aprendizaje profundo. El aprendizaje automático a menudo se divide en dos categorías. El ‘aprendizaje supervisado’ implica que los algoritmos sean ‘entrenados’ en un conjunto de datos seleccionado para detectar patrones en otros datos encontrados posteriormente ‘en la naturaleza’. El aprendizaje no supervisado, por el contrario, se refiere a sistemas que pueden aprender desde cero mediante la inmersión. en datos.

Crear máquinas inteligentes o más inteligentes que los humanos, no es lo mismo que  hacer a los humanos más inteligentes. Cada nivel de complejidad implica un tipo de conocimiento emergente nuevo y más poderoso, en el que todos los procesos cognitivos están aumentados. El último paso, es decir, aquel hacia el cual tendemos, sería el conocimiento algorítmico.

Y esa propuesta es la que hacemos nosotros (JUAN DOMINGO FARNOS https://juandomingofarnos.wordpress.com/…/algoritmos…/

INCLUSO DENTRO DE UN PROCESO transversal y multidisciplinar, para lograr nos lo eso, sino una autonomía en los aprendizajes y una personalizacion, como nunca hasta ahora se jha producido (POR TANTO TOTALMENTE ORIGINAL, apoyada en todo lo que les escribo, más las distintas potencialidades que tenemos de aprendizaje que tenemos las personas en nuestro cerebro y que les visualizo.

Junto con la arquitectura de redes neuronales, un algoritmo de aprendizaje de refuerzo autodirigido de última generación es la innovación técnica  que se entrena únicamente mediante el aprendizaje de refuerzo de autoaprendizaje, comenzando con el juego aleatorio, sin supervisión ni uso de datos humanos. ‘como su equipo de ciencia lo describió en la Naturaleza. Sus ‘sistemas de aprendizaje de refuerzo están entrenados a partir de su propia experiencia, en principio permitiéndoles exceder las capacidades humanas y operar en dominios donde falta la experiencia humana’. A medida que el algoritmo de refuerzo procesa sus propias experiencias en el juego, es ‘recompensado’ y ‘reforzado’ por las victorias que logra, para ‘entrenar a un nivel sobrehumano’.

Otro beneficio de la personalización es que cada vez que se personaliza, a aprender y almacenar un poco más sobre el conjunto único de un alumno, se aportan posiciones diferenciadas al aprendizaje social.

Esto no solo permite llegar a un mejor AUTOAPRENDIZAJE, si no también una manera más de “emprendimiento” y “apropiación” de la red, como “espacio” claramente de aprendizaje personalizado y socializador.

Esta “vinculación” que se establece, es propia incluso del funcionamiento cerebral, como muy bien dice George Siemens y diría mi amigo argentina Alicia Banuelos (una maravillosa Física)…”la sinapsis neuroal provoca que las neuronas se vinculen, se relacionen unas con otras”.

El cerebro emite una especie de corriente de “relación” que con un poco de entrenamiento, que lo tengo y mucho, tengo que establecer relaciones entre todos e incluirlos, si es necesario en mis ideas para mejorarlas…

En una base de datos tradicional, el esquema de una tabla se aplica en tiempo de carga de datos. Si los datos que se están cargando no se ajusta al esquema, a continuación, se rechaza. Este diseño es a veces llamado esquema de escritura ya que los datos se comprueban con el esquema cuando se escribe en la base de datos y eso se puede extrapolar a lo que pretendemos que los alumnos aprendan del curriculum preestablecido.

 

 

 

ubicomp_venn

 

 

 

 

 

 

 

 

Normalmente por otra parte, no comprobamos los datos cuando se cargan ,cuando los comentamos, explicamos… sino más bien cuando se emite una consulta. Esto se conoce como esquema de lectura.

Hay ventajas y desventajas entre los dos enfoques. Esquema de lectura hace que tengamos una carga inicial muy rápida, ya que los datos no tienes que ser leídos, analizados y serializados en el disco en formato interno de la base de datos.

La operación de carga es sólo una copia de archivo o de movimiento, y es lo que hacemos con los aprendizajes mecánicos de lectura y escritura (totalmente nefastos) es mucho más flexible: : considerar la posibilidad de dos o más esquemas para los mismos datos subyacentes, dependiendo del análisis que se realiza y de la persona que tenga que hacerlo (personalización en los procesos de aprendizaje).

Aparecen una incontenible avalancha de datos por segundo, las tecnologías se hacen cada vez más intangibles y ubicuas. Con la COMPUTACIÓN UBÍCUA, la asincronía funde el“ahora” y el “cuando”; SE TRANSFORMA en cognitiva-mente integrada, están surgiendo nuevas formas de pensar en las quela cognición se complementa con el pc, tabletas, mobile learning…
Mediante el manejo de tecnologías semánticas: etiquetados generados por los usuarios,folksonomías y ontologías; es intuitiva, como cualquier hábito, la computación ubicua se presenta como una parte de la experiencia vital…. niveles de complejidad, constante redefinición de los centros y las periferias y nos permite pasar de la misma Computación Ubícua a la I-BICUIDADuna nueva manera más SINCRONA de actuar en tiempo real, disponiendo en todo momento de las mejores FUENTES posibles…

Obviamente nosotros vamos mucho más lejos y ante no solo la abalancha de datos que nos llegan, ya que de lo que hablamos, primero, es de otro paradigma, con lo que las “formas actuales” de aprendizaje en nada se parecen a las que proponemos nosotros englobadas dentro de paraguas de la sociedad, contrariamente a lo que sucede ahora en la que la educación permanece como “una parte aislada” dentro de ella.

Ya no queremos algoritmos que saquen patrones y que todos tengamos que seguir sus indicaciones, estamos por algoritmos tanto de lo que son las personas como de lo que necesitan “Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese planteamineto que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”

La implicación, en otras palabras, es que poderosos algoritmos de aprendizaje podrían ser puestos a la tarea de entrenar a mejores humanos, o incluso de superar a los humanos para resolver problemas del mundo real.

“Es cierto que los sistemas cognitivos son máquinas inspiradas por el cerebro humano”, ha argumentado en un artículo reciente el vicepresidente de investigaciones y soluciones  “Pero también es cierto que estas máquinas inspirarán el cerebro humano, aumentarán nuestra capacidad de razonar y reconectarán las formas en que aprendemos”.

Todos ellos e basan en teorías científicas de aprendizaje -comportamiento psicológico y neurociencia cognitiva- que se utilizan para crear sistemas algorítmicos “sobrehumanos” de aprendizaje y creación de conocimiento. Traducen las teorías subyacentes de la psicología conductista y la neurociencia cognitiva en códigos y algoritmos que pueden ser entrenados, reforzados y recompensados, e incluso convertirse en máquinas autorreforzadoras auodidácticas que pueden exceder la experiencia humana.

Para educadores e investigadores de la educación esto debería plantear preguntas apremiantes. En particular, nos desafía a reconsiderar qué tan bien somos capaces de comprender los procesos que normalmente se consideran parte de nuestro dominio, ya que ahora están siendo refigurados computacionalmente. ¿Qué significa hablar sobre las teorías del aprendizaje cuando el aprendizaje en cuestión tiene lugar en algoritmos de redes neuronales?

El “conductismo de máquina” del tipo desarrollado en DeepMind puede ser una de las teorías de aprendizaje más importantes de la actualidad. Pero debido a que los procesos que explica ocurren en las computadoras en lugar de en los humanos, la investigación educativa tiene poco que decir al respecto o sus implicaciones.

Los desarrollos en el aprendizaje automático, los algoritmos autodidacticos y los procesos de autorrefuerzo pueden ampliar el alcance de los estudios educativos. La ciencia cognitiva y la neurociencia ya adoptan métodos computacionales para comprender los procesos de aprendizaje, de maneras que a veces parecen reducir la mente humana a procesos algorítmicos y el cerebro al software. Los ingenieros de IBM para la informática cognitiva en la educación, por ejemplo, creen que sus desarrollos técnicos inspirarán nuevas comprensiones de la cognición humana.

Será esencial un enfoque científico social de estas teorías computacionales del aprendizaje, ya que buscamos comprender mejor cómo una población de sistemas no humanos está siendo capacitada para aprender de la experiencia y, de ese modo, aprender a interactuar con los procesos de aprendizaje humano. En este sentido, los modelos de aprendizaje que están codificados en sistemas de aprendizaje automático pueden tener consecuencias sociales significativas. Necesitan ser examinados tan de cerca como los estudios sociológicos previos han examinado la experiencia de las “ciencias psicológicas” en las expresiones contemporáneas de autoridad y gestión sobre los seres humanos.

Las implicaciones sociales del aprendizaje automático se pueden abordar de dos maneras que requieren un examen educativo adicional. El primero se refiere a cómo la psicología del comportamiento se ha convertido en una fuente de inspiración para los diseñadores de plataformas de redes sociales, y cómo las plataformas de medios sociales están asumiendo un rol pedagógico distintivo.

La mayoría de las plataformas modernas de medios sociales se basan en la ciencia del cambio de comportamiento o en variantes relacionadas de la economía del comportamiento. Utilizan datos exhaustivos sobre los usuarios para generar recomendaciones y sugerencias que pueden dar forma a las experiencias posteriores de los usuarios. Los procesos de aprendizaje automático se utilizan para extraer datos de usuarios sobre patrones de comportamiento, preferencias y sentimientos, comparar esos datos y resultados con vastas bases de datos de actividades de otros usuarios, y luego filtrar, recomendar o sugerir lo que el usuario ve o experimenta en la plataforma.

Desde luego, los procesos de análisis de datos basados ​​en el aprendizaje automático se vuelven controvertidos tras las noticias sobre perfiles psicológicos y microtargeting a través de las redes sociales durante las elecciones, descritas como “manipulación de la opinión pública” y “propaganda computacional”. El campo de la educación debe participar este debate porque el aprendizaje automático llevado a cabo en las redes sociales desempeña el papel de una especie de “pedagogía pública”, es decir, las lecciones aprendidas fuera de las instituciones educativas formales por cultura popular, instituciones informales, espacios públicos, discursos culturales dominantes, y tanto el medios tradicionales y sociales.

Sin embargo, las pedagogías públicas de las redes sociales son importantes no solo porque están guiadas por el aprendizaje automático. También están profundamente informados por la psicología, y específicamente por la psicología conductual. Las ciencias psicológicas del comportamiento están hoy profundamente involucradas en la definición de la naturaleza de los comportamientos humanos a través de sus explicaciones disciplinarias, y en informar las aspiraciones comerciales y gubernamentales estratégicas.

En Neuroliberalismo de Mark Whitehead y sus coautores sugieren que el software de big data se considera una ‘edad de oro’ para la ciencia del comportamiento, ya que los datos se usarán no solo para reflejar el comportamiento del usuario sino también para determinarlo. En el núcleo de las redes sociales y la conexión de la ciencia del comportamiento están las ideas psicológicas de que la atención de las personas puede “engancharse” a través de simples trucos psicológicos, y que sus comportamientos posteriores y hábitos persistentes pueden ser “activados” a través de la “informática persuasiva” y el comportamiento diseño.’

Después del post “Paradigmas educativos ….Hemos realizado este trabajo con el objetivo de conocer sobre los paradigmas de la investigación educativa como son el positivismo, interpretativo, sociocrítico sus métodos y técnicas, conceptos y principios que son herramientas que nos ayudará para el presente y futuro como docentes y estudiantes. La investigación en tecnología educativa está
forzosamente relacionada con lo que se desarrolla en todas aquellas ciencias y disciplinas en las que se fundamenta, por ello su evolución ha seguido los mismos caminos que la investigación didáctica en general y también ha contemplado la polémica entre los paradigmas positivistas, imperativos socio críticos…

 

 

 

 

 

 

170151087saltiParadigma_ENG_01

 

 

 

 

Desde la perspectiva cualitativa la investigación educativa pretende la interpretación de los fenómenos, admitiendo desde su planteamiento fenomenológico que admite diversas
interpretaciones. Muchas veces hay una interrelación entre el investigador y los objetos de investigación, pero las observaciones y mediciones que se realiza se consideran válidas mientras constituyan representaciones auténticas de alguna realidad. Tener paradigmas y pensar que cada uno corresponda a un concepción de construcción de conocimientos, una imitante impuesta por una realidad extrapolada desde un conocimiento acumulado que no llega a una profundidad que subraye en lo visible la realidad, cada uno de los paradigmas guarda su sentido pero a la vez, uno tiene razón de ser función del otro. Términos de paradigmas se puede encontrar hoy en cientos textos científicos, en artículos de los más variados contextos, por lo general su empleo viene del sentido que se ha generalizado a partir de la obra de Kuhn.

“La estructura de las revoluciones científicas”. No existe aún una primera teoría unificadora de la educación que nos permita analizar y solucionar la globabilidad y la complejidad de los problemas de la educación. Peor los problemas existen y es posible asumir una de dos posiciones

Esta trilogía paradigmática, conformada por el paradigma cientificista, el paradigma hermético y el paradigma crítico han originado una ruptura epistemológica con un subsecuente proliferación de diferentes estudios, enfoques, teorías y prácticas dentro de la esfera de la investigación educativa, tratando de legitimar desde cada uno de estos paradigmas una propuesta emergente que sirva de fundamento para orientar la acción educativa y el proceso de enseñanza-aprendizaje.

Si en el primer post hablamos de paradigmas, ahora lo haremos de “investigación“…Mientras que la etnografía general se basa en datos cualitativos, no quiere decir que los enfoques cuantitativos no deben ser empleados en el proceso de investigación. La combinación de los dos cables a un “enfoque de métodos mixtos”, que puede adoptar diversas formas: la recolección y análisis de datos pueden ser separados o dirigirse juntos, y cada uno de ellos se pueden utilizar en el servicio de la otra. Por supuesto, esto no es nuevo en los círculos académicos y la etnografía corporativa, pero parece que hay un renovado interés últimamente en este tema, ya que sin duda alguna los aspectos INFORMALES, están superando los formales.

Uno de los impulsores de este renovado interés es la enorme cantidad de información generada por las personas, las cosas, el espacio y sus interacciones – lo que algunos han llamado ” Big Data “: Los grandes conjuntos de datos creados por la actividad de las personas en los dispositivos digitales de hecho ha dado lugar a un aumento de las “huellas” de aplicaciones para teléfonos inteligentes, programas de ordenador y sensores ambientales (INTELIGENCIA ARTIFICIAL) Dicha información se espera actualmente para transformar la forma en que estudiamos el comportamiento y la cultura humana, con, como de costumbre, las esperanzas utópicas, distópicas y miedos …, llegando a entender estos datos como METADATOS….

Encontramos términos que admiten conceptos con los que muchos estaríamos de acuerdo :  Etno-minería, como su nombre indica, combina técnicas de la etnografía y la minería de datos. En concreto, la integración de técnicas de minería de datos etnográficos y de etno-minera incluye una mezcla de sus puntos de vista (en lo interpretaciones son válidas e interesantes, y cómo deben ser caracterizados) y sus procesos (lo que selecciones y transformaciones se aplican a los datos para encontrar y validar las interpretaciones).

Por medio de estas investigaciones, esta integración tiene por objeto poner de relieve nuevas formas de entender y potencialmente inspirar el diseño de la investigación la interacción persona-ordenador… 

La misma librería JMSL incluye tecnología de redes neuronales que complementa las ya existentes funciones de minería de datos, modelado y predicción, disponibles en toda la familia de productos IMSL. Las clases para la predicción basada en redes neuronales ofrecen un extraordinario potencial , gracias a su capacidad de crear modelos predictivos a partir de datos históricos y de “aprender” para optimizar el modelo a medida que se obtiene más información, lo podríamos llamar “RETROALIMENTACIÓN CONTINUADA Y MULTICANAL”

Los diseñadores de medios sociales de Silicon Valley saben cómo moldear el comportamiento a través del diseño técnico ya que, según Jacob Weisberg, “las disciplinas que lo preparan para esa carrera son la arquitectura de software, la psicología aplicada y la economía del comportamiento, utilizando lo que sabemos sobre las vulnerabilidades humanas para “Weisberg destaca cuántos de los ingenieros de Silicon Valley son graduados del Laboratorio de Computación Persuasiva de la Universidad de Stanford, que utiliza ‘métodos de psicología experimental para demostrar que las computadoras pueden cambiar los pensamientos y comportamientos de las personas de maneras predecibles’.

Las recompensas conductuales -o el aprendizaje reforzado- son importantes en el campo de la informática persuasiva, ya que obligan a las personas a seguir volviendo a la plataforma. Al hacerlo, generan más datos sobre ellos mismos, sus preferencias y comportamientos, que luego pueden procesarse para que la experiencia de la plataforma sea más gratificante. Estas técnicas son, a su vez, interesantes para los científicos que cambian el comportamiento y los que formulan las políticas, ya que ofrecen formas de desencadenar ciertos comportamientos o “empujar” a las personas a tomar decisiones dentro de la “arquitectura de elección” que ofrece el entorno.

Karen Yeung describe la aplicación de datos psicológicos sobre las personas para predecir, orientar y cambiar sus emociones y comportamientos como hiperimpulso. Las técnicas de hiperimpulso utilizan técnicas de computación persuasivas para enganchar a los usuarios y de la ciencia del cambio de comportamiento para desencadenar acciones particulares y respuestas.

“Estas técnicas se utilizan para dar forma al contexto de elección de información en el que se produce la toma de decisiones individuales”, argumenta Yeung, “con el objetivo de canalizar la atención y la toma de decisiones en las direcciones preferidas por el” arquitecto de elección “.

A través del diseño de estrategias de empuje psicológico, las organizaciones de medios digitales están comenzando a jugar un papel poderoso en la configuración y el gobierno de comportamientos y sentimientos.

Algunos ingenieros de Silicon Valley han empezado a preocuparse por las consecuencias psicológicas y neurológicas negativas de los “trucos psicológicos” de los medios sociales en la atención y la cognición de las personas. Silicon Valley se ha convertido en un “imperio global de modificación del comportamiento”, afirma Jaron Lanier. Del mismo modo, a los críticos de AI les preocupa que los algoritmos cada vez más sofisticados inciten y engatusen a las personas para que actúen de la forma que hayan considerado más apropiada -o óptimamente gratificante- por sus algoritmos subyacentes, con importantes implicaciones sociales potenciales.

Lo que sustenta todo esto es una visión conductista particular del aprendizaje que sostiene que las conductas de las personas pueden ser manipuladas y condicionadas a través del diseño de arquitecturas digitales. Audrey Watters ha sugerido que el conductismo ya está resurgiendo en el campo de la tecnología digital, a través de aplicaciones y plataformas que enfatizan el “refuerzo automático continuo” de los “comportamientos correctos” definidos por los ingenieros de software. Tanto en las pedagogías públicas de las redes sociales como en las pedagogías del aula con tecnología mejorada, se está poniendo en práctica un reinicio digital de la teoría del aprendizaje conductista.

Los impulsos conductuales a través del aprendizaje automático algorítmico se están convirtiendo en parte integral de las pedagogías de hipernubo público de las redes sociales. Es parte de la arquitectura instruccional del entorno digital que las personas habitan en su vida cotidiana, buscando constantemente enganchar, desencadenar y empujar a las personas hacia rutinas particulares persistentes y condicionar hábitos de conducta “correctos” que han sido definidos por los diseñadores de plataforma como preferibles en de alguna manera. La investigación educativa debe comprometerse estrechamente con las pedagogías públicas de hipernubración que se producen cuando las ciencias del comportamiento se combinan con el conductismo del aprendizaje automático algorítmico, y observa más de cerca las teorías subyacentes del conocimiento conductual en las que se basan y las conductas que están diseñadas para condicionar .

El segundo gran conjunto de implicaciones del aprendizaje automático se relaciona con la adopción de tecnologías basadas en datos dentro de la educación específicamente. Aunque el concepto de ‘aprendizaje personalizado’ tiene muchas caras diferentes, su encuadre contemporáneo dominante es a través de la lógica del análisis de big data. El aprendizaje personalizado se ha convertido en una poderosa idea para el sector de la tecnología ed, que es cada vez más influyente en la visión de la reforma educativa a gran escala a través de sus plataformas adaptativas.

Las plataformas de aprendizaje personalizadas generalmente consisten en una combinación de minería de datos, análisis de aprendizaje y software adaptativo. Los datos de los estudiantes son recopilados por dichos sistemas, luego se comparan con un modelo ideal de rendimiento estudiantil, para generar predicciones de posibles avances y resultados futuros, o se adaptan de manera receptiva para satisfacer las necesidades individuales de los estudiantes según lo considere apropiado el análisis.

En resumen, el aprendizaje personalizado depende de que los algoritmos autodidacticos de aprendizaje automático se pongan a trabajar para extraer, extraer y procesar los datos de los estudiantes de forma automatizada.

El discurso que rodea el aprendizaje personalizado lo enmarca como un nuevo modo de educación “progresiva”, con ecos conscientes de las pedagogías centradas en el alumno de John Dewey y los modelos asociados de aprendizaje basado en proyectos, experienciales y basados ​​en la investigación. El trabajo de Dewey ha demostrado ser una de las teorías filosóficas más influyentes y duraderas en la educación, a menudo utilizado en conjunto con relatos más abiertamente psicológicos del rol que juega la experiencia en el aprendizaje.

Con su combinación de análisis de big data y aprendizaje automático con progresivismo, podríamos llamar a la teoría del aprendizaje detrás de la personalización ‘Big Dewey’.

Entramos en una época de fronteras porosas entre la inteligencia humana y la inteligencia artificial (con razón llamamos “inteligencia artificial”). Necesitamos una prueba de Turing para decidir si una entidad es humano o no. Si solicitamos algo en línea, como comprar, aprender, un billete de avion…es posible que tengamos que demostrar, que no somos un BOT, una máquina. Y, cuando se trata del desafío que enfrenta la educación – la forma de proporcionar una educación de calidad para un gran número de estudiantes a un costo reducido – la tentación de cruzar la frontera hombre-máquina y dejar que las máquinas (es decir, algoritmos) hagan el trabajo pesado es casi irresistible, es más, ya no es una tentación, realmente es una necesidad.

Las máquinas, las TIC, la internet… proporcionan información más rápido de lo que nadie podría haber imaginado, pero el aprendizaje es dar sentido a la información y el descubrimiento de su significado, el verdadero objetivo de la educación, y con las máquinas aun no lo hemos conseguido, aunque algunos estemos en ello..

Los aprendices, dentro de la educación formal de manera sistematizada, y en la informal, de manera generalizada… pueden beneficiarse de la orientación de los algoritmos que apuntan al aprendiz hacia los sistemas de tutoría en línea, por ejemplo, que están demostrando tan eficaz como tutores humanos.

Los alumnos pueden aprender métodos y enfoques de los tutores en línea para luego ayudarles a lo largo de su propio camino de aprendizaje. Sus propios itinerarios de aprendizaje. Ese es el punto: los estudiantes adultos (es decir los estudiantes en edad universitaria) aprenden mejor cuando ellos mismos crean rutas de aprendizaje; el tutor en línea puede proporcionar ayuda, pero no puede ser la totalidad de la experiencia de aprendizaje.

Las tecnologías de aprendizaje adaptativas, análisis de aprendizaje en línea que se utilizan para crear rutas de aprendizaje para los alumnos en función de su rendimiento, pueden ayudar a algunos estudiantes, pero no pueden, en muchos casos, proporcionar la oportunidad para el conocimiento profundo y duradero sobre cómo aprender.

La máquina, en las tecnologías de aprendizaje adaptativo, se ha hecho cargo: el algoritmo es la creación de itinerarios de aprendizaje, y no lo que haga el alumno. Este enfoque podría entenderse como un intento de “aprendizaje semi-pasivo.” Esto no quiere decir que no haya usos de las tecnologías de aprendizaje adaptativo, pero es que decir que este enfoque sólo puede ser un elemento de un camino de aprendizaje humano impulsado .

Sólo un ser humano realmente puede personalizar todo lo que él o ella lo hace. Es la era de la personalización, pero eso sólo significa ayudar a cada uno de nosotros para pasar menos tiempo en los detalles y más tiempo en las actividades humanas importantes, como la imaginación, la creatividad, el descubrimiento, la integración, la intuición, ..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

El mismo Pierson dice “Las evaluaciones se incrustan en las actividades de contenido y aprendizaje por lo que la instrucción y el aprendizaje no tiene que ser interrumpidos para determinar las áreas de progreso y desafío continuo. Mientras tanto, los algoritmos y las progresiones de aprendizaje integrados en el sistema van a ajustar en respuesta a las actividades de aprendizaje relacionadas del estudiante para permanecer en sintonía con sus ecosistemas de aprendizaje. Esta información también se proporciona al educador con opciones y recursos adicionales en tiempo real ya que el educador puede utilizarlo para apoyar al estudiante y su aprendizaje”

Como esta nueva tecnología comienza a tomar forma el diseño de otra sociedad ya que SUS MIMBRES son completamentes nuevos a no como herramientas, metodologías…(innovacioned), sino un cambio “radical” en la concepcion de la misma sociedad.

Algunos pensaran que en parte estamos en el APRENDIZAJE ADAPTATIVO, ya que nos basmaos en los DATOS, pues no, lo hacemos asi como una IDEA COMPLETAMENTE NUEVA, es decir, utilizamos DATOS, si, pero dentro del proceso personalizado de aprendizaje, por lo tanto se trata de algo completamente diferente.

Estos algoritmos de personalización (Rauch, Andrelczyk y Kusiak, 2007), recopilar información del usuario y analizan los datos para que pueda ser transmitida al usuario en momentos específicos (Venugopal, Srinivasa y Patnaik, 2009). Por ejemplo, cuando estoy terminado de ver un video en YouTube o una película en digitaly he aquí que presenté con una lista de recomendaciones sobre los géneros que acabo consumidas. Esta idea funciona de forma similar con algoritmos de personalización que sería capaz de recomendar cursos o avenidas de aprendizaje basado en el conocimiento previo alumnos o cursos completado.

Es nuestra responsabilidad en esta sociedad….

          a-Aplicar las técnicas de minería de datos, aprendizaje automático y reconocimiento de patrones para los  conjuntos de datos estructurados y no estructurados.

          b-Diseño, desarrollo y prueba de algoritmos de aprendizaje y modelos de datos sobre el comportamiento humano para construir instrumentos de evaluación cognitiv     

           c-Construir algoritmos personalizados para un motor de recomendación vía de desarrollo

           d-Los modelos de diseño para el desarrollo de aplicaciones nuevo jueg

            e-Contribuir a la mejora de nuestros algoritmos.

Tambien nos podemos hacer una serie de preguntas que no vamos a obviar….y que nos ayudaran a entender mejor el por qué de las cosas…

¿El aprendizaje PERSONALIZADO tiene suficiente mejoría en el aprendizaje del aprendiz para justificar los costos de un sistema de aprendizaje más complejo?
¿Cómo podemos aprovechar algoritmos de aprendizaje automático “big data” y otros.. para la construcción de sistemas de aprendizaje personalizadas más eficientes y rentables?
¿Cómo pueden las ideas y resultados de la investigación de las ciencias cognitivas, utilizarlos para mejorar la eficacia de los sistemas de aprendizaje personalizados?.

Estos sistemas pueden aprender, pero no son las mismas formas de aprendizaje conocidas por la mayoría de los investigadores en educación. A medida que avanza la innovación técnica, más y más aprendizaje va a suceder dentro de las computadoras. Así como los educadores esperan cultivar las mentes jóvenes para que se conviertan en aprendices independientes de por vida, el sector tecnológico está impulsando los procesos de aprendizaje para crear agentes de aprendizaje automático no humanos cada vez más automatizados para compartir el mundo con los humanos. ¿Qué quiere decir que los investigadores educativos no deberían buscar desarrollar su experiencia en la comprensión del aprendizaje automático no humano?

Las teorías del aprendizaje no humano también son cada vez más influyentes, ya que los procesos de aprendizaje automático sustentan tanto las pedagogías de hipernubo público de las redes sociales como las plataformas de aprendizaje personalizadas que he delineado. Las nuevas pedagogías conductistas públicas de hipernudios, inspiradas tanto por la ciencia conductual como por el diseño conductual, están ocurriendo a gran escala entre diferentes públicos, a menudo de acuerdo con objetivos políticos y comerciales, pero la investigación educativa es extrañamente silenciosa en esta área.

Aunque mucho se ha escrito sobre big data y personalización, también debemos explorar cómo la filosofía del sector tecnológico podría afectar e influir en las escuelas, los docentes y los estudiantes a medida que las plataformas de aprendizaje adaptativo escapan del laboratorio de pruebas beta y comienzan a colonizar la educación estatal. Los estudios futuros de aprendizaje personalizado podrían examinar las formas de aprendizaje automático de máquina que se produce en la computadora, así como los efectos educativos y los resultados producidos en el aula.

En la educación – especialmente en la tecnología de mejora de la educación – se nota el final de una época y el principio de otra, la propia OBSOLESCENCIA nos lo indica, lo que es más difícil de ver en la vida cotidiana de los espacios cerrados y obligatorios educativos..

Los asesores de educación y altavoces normalmente nos preguntamos “si un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”. Obviamente, esta es una afirmación absurda (incluso si pasamos por alto los retos de viajes en el tiempo). Los asesores de educación y algunos “voceros” normalmente declaran “si, un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”.

Por tanto pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

“Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese planteamiento que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”

Hay muchas maneras de personalizar el aprendizaje. Sin embargo, al igual que los términos de estilos y la motivación del aprendizaje, la personalización es otro término mal definido. Para ser más específicos, se describe la personalización aquí con cinco niveles con creciente sofistificación, cada nivel que describe una estrategia de personalización específica. Desde los más simples a las más complejas, las cinco estrategias son:

(a) nombre reconocido;

(B) describe a sí mismo;

(C) segmentados;

(D) cognitivo-basada; y

(e) de base integral de la persona.

A lo mejor el “sueño de algunos de una educación autónoma y libre (solo realizable mediado con la con la Machine learning, AI, internet, TIC), no es tal sueño y es una realidad.

 

juandon

LA LIGA DE LOS 12 ARTICULOS DEL 2018

Juan Domingo Farnos Miro

 

images

 

El Blog que siempre he considerado mi libro de libros, está llegando a las 30.000 entradas y por tanto se merece un repaso de este último año en el que podré uno de cada mes del año, no porque sea mejor ni peor, si no por ser representativos del momento en que se ejecutaron..

Por sus características son todo propuestas de transformación socio-educativas con el soporte de las tecnologías del momento y con la pretensión de un cambio cultural que conlleve otros valores propios de estos nuevos tiempos.

La verdad es que estas ideas ya se están imponiendo por el mundo en las diferentes áreas de la sociedad: educación, economía, sanidad, robótica, inteligencia artificial etc… por eso a partir de ahora nuestro trabajo será acabar de implantarla, desarrollarlas en su máxima extensión e ir transformando a la vez que la sociedad lo demanda.

 

ENERO:

La formación debe “amplificar” las preferencias de la sociedad en educación, política, economía…

 

La formación integrada en estos aspectos económicos, laborales, socio-políiticos,…deben ser la punta de lanza en las preferencias de la sociedad, con lo cual una vez más nos muestra el camino PRÓXIMO a seguir: la desaparición de la actual cultura de las titulaciones (la mayoría hoy en día ya se reconocen como obsoletas y otras que todavía se sostienen estamos de acuerdo que deben cambiar del todo, ya que si no lo hacen, tampoco tendrán sentido dentro de dos o tres años a mucho tardar.

 

No es posible continuar ofreciendo el conocimiento de la manera tradicional ya, y si las instituciones de formación (escuelas y universidades, en primer lugar) no ajustan sus métodos de transmisión de conocimientos, se correrá el riesgo de ser marginados por las nuevas infraestructuras de conocimiento y producción, con lo que desaparecerán sin remedio, y si lo hacen, no desaparecerán posiblemente pero su rol será otro-evidentemente no el de ser FINALISTAS- es decir, ofrecer títulos..

 

 

FEBRERO

 

Personalized learning: el final del aprendizaje individualizado!!!

Los aprendices que realizan sus aprendizajes están generalmente auto-motivados en situaciones de aprendizaje (orientado a tareas, proyectos, orientado a aplicaciones a mano) que les interesan. De lo contrario, buscan recompensas extrínsecas para lograr los objetivos que parecen tener menos valor y quizás requerir más esfuerzo a continuación, inicialmente están dispuestos a comprometerse. Ellos pueden reconocer claramente el cumplimiento de los objetivos declarados , para obtener el grado, la racionalización de los esfuerzos de aprendizaje, y evitando pasos exploratorios más allá de las exigencias de la situación y la tarea de aprendizaje, se compadecen con su grado de interés en el objetivo declarado. Toman el control y la responsabilidad de su aprendizaje, pero a menudo dependen de otros para la motivación, la fijación de objetivos, como entrenador, horarios y dirección. Sin embargo, ellos pueden auto-motivarse y ejercer un mayor esfuerzo y la excelencia personalizada.

En contraste con los alumnos de transformación, los alumnos que realizan innovaciones son a corto plazo, los detalles, los estudiantes orientados a la tarea (menos pensadores holísticos o grandes-imágenes), se toman menos riesgos con objetivos desafiantes o difíciles, cometen menos esfuerzo, se centran en los grados y recompensas, y se alegre conseguir un menor cada vez que las normas se establecen por debajo de sus capacidades. Son más cómodos, las relaciones interpersonales de entrenamiento, y se basan en apoyo externo, los recursos y la interacción para realizar una tarea. En contraste con los alumnos que cumplen dichos requisitos, estos alumnos tienen habilidades más sofisticadas, cometen un mayor esfuerzo para alcanzar las metas de nivel superior, y prefieren más sofisticados entornos de aprendizaje y rendimiento con el entretenimiento interacción que crea el esfuerzo progresiva, el interés, la competencia, la diversión y metas alcanzables.

 

 

MARZO

 

No existe el aprendizaje!!!! (el aprendizaje se cuestiona, el aprendiz, no)!

 

 

Pero, ¿realmente tiene valor el aprendizaje? Naturalmente no existe un valor generalizado, es decir, todos no le damos el mismo valor a a aprender, ni siquiera a aprender a aprender, por tanto, es evidente que NO EXISTE EL APRENDIZAJE, en cambio SI EXISTEN LOS APRENDICES.

 

 

Comunidades que se interelacionan aunque sea desde posicionamientos que conforman NICHOS diferentes, pero que cuando se pretende dar un VALOR o un APRENDIZAJE, necesitan estar en constante relación…

 

Por tanto “El aprendiz es un actor y activo en su propio aprendizaje. La nueva “estrella” de este enfoque tuvo su estatus cambió considerablemente. Hay o sólo fue incluido, se convierte en cabeza de cartel, responsable de su aprendizaje. Teniendo en cuenta sus necesidades, intereses, sus estilos de aprendizaje, sus estrategias, problemas psicológicos: todo se hace para maximizar sus posibilidades de éxito”.

 

 

 

 

mesa_formacion-900x444

 

 

 

ABRIL

 

LA EDUCACIÓN INCLUSIVA, HOY…. (TIC, Internet, AI…)… de la distopía a la útopía.

 

La educación inclusiva generalmente se trabaja con alumnos con necesidades educativas especiales, con lo que los suramericanos llaman “brechas”, sesgo…sin embargo acotamos que hoy la educación inclusiva va mucho más allá, ya que busca el aprendizaje personalizado/socializador de cada alumno, pero sacando lo mejor de él, es decir, busca la excelencia del alumno, para esto el elearning y la web 2.0 van muy bien porque ayudan a motivarles, a que aprendan mejor y sobre todo desecha un poco el tema de la enseñanza-aprendizaje…

Tampoco puede obviarse el cambio de roles, el aprendiz pasa a ser el responsable de su aprendizaje y de su evaluación y el sistema, con los docentes a la cabeza dejan de ser los jerarcas “obligados” y pasan a ser “acompañantes” de los aprendices que dejan de ser “los suyos”.

El valor añadido que representa esta nueva “diversidad” se puede desarrollar con la ayuda de las TIC, internet, la inteligencia artificial, el analisis de datos, el pensamiento crítico y de diseño…

 

 

 

MAYO

 

La Inteligencia artificial permite llegar a un aprendizaje no supervisado y personalizado.

Entramos en una época de fronteras porosas entre la inteligencia humana y la inteligencia artificial (con razón llamamos “inteligencia artificial”). Necesitamos una prueba de Turing para decidir si una entidad es humano o no. Si solicitamos algo en línea, como comprar, aprender, un billete de avion…es posible que tengamos que demostrar, que no somos un BOT, una máquina. Y, cuando se trata del desafío que enfrenta la educación – la forma de proporcionar una educación de calidad para un gran número de estudiantes a un costo reducido – la tentación de cruzar la frontera hombre-máquina y dejar que las máquinas (es decir, algoritmos) hagan el trabajo pesado es casi irresistible, es más, ya no es una tentación, realmente es una necesidad.

Las máquinas, las TIC, la internet… proporcionan información más rápido de lo que nadie podría haber imaginado, pero el aprendizaje es dar sentido a la información y el descubrimiento de su significado, el verdadero objetivo de la educación, y con las máquinas aun no lo hemos conseguido, aunque algunos estemos en ello

La máquina, en las tecnologías de aprendizaje adaptativo, se ha hecho cargo: el algoritmo es la creación de itinerarios de aprendizaje, y no lo que haga el alumno. Este enfoque podría entenderse como un intento de “aprendizaje semi-pasivo.” Esto no quiere decir que no haya usos de las tecnologías de aprendizaje adaptativo, pero es que decir que este enfoque sólo puede ser un elemento de un camino de aprendizaje humano impulsado .

 

Aprendizaje de adaptación y de personalización para la mejora continua del desempeño de impacto y su ampliacion continuado. Aprender en un marco de conocimiento que se utiliza para identificar oportunidades de utilizar herramientas de conocimiento de gestión en áreas específicas – gestión de la información, la comunicación interna y externa, el aprendizaje de seguimiento y evaluación orientada a alentar las innovaciones y la experimentación – para mejorar la ejecución de un proyecto….

la investigación muestra que el método de enseñanza tradicional no contribuye al aprendizaje efectivo, y no utiliza el potencial de la tecnología (Jonassen, Norton & Wiburg, Sandholtz, Ringstaff, & Dwyer, McCormick & Scrimshaw2). De hecho, muchos creen que una buena herramienta puede ser inútil si no es integrada dentro de estrategias efectivas de enseñanza.

 

 

JUNIO

El aprendizaje permanente dentro de un escenario de trabao-aprendizaje con nuevas formas de procesar y de rendimiento.

 

El aprendizaje permanente – junto con ideas como “la sociedad del conocimiento” – se ha convertido en popular entre los políticos y los responsables políticos en varios países. Pero, ¿qué quiere decir la gente por ella? ¿Es útil la idea del aprendizaje permanente? (Basil Yeaxlee)

 

Las organizaciones educativas, las de formación… se están dado cuenta, que empiezan a perder su monopolio sobre el aprendizaje. Los aprendices, empleados se atreven a organizarse. Más del 90% de lo que necesita en su trabajo actual, en su universidad… no fue aprendido por las intervenciones de de los aprendizajes formales, sino en situación de aprendizaje informal, como el aprendizaje en el trabajo (LEARNING AND WORK) las discusiones con los compañeros o mentores, etc etc Esa es la respuesta que generalmente se obtiene si se hace la pregunta adecuada Esta situación asusta a las organizaciones de formación – pero no debería.

 

El nuevo mundo de aprendizaje se basa en una nueva forma de pensar – el intercambio en lugar de esconderse, colaborando en lugar de instruir, actuando en lugar de reaccionar. La tecnología nos permite apoyar los procesos de aprendizaje en las empresas en el ámbito laboral. Hoy en día es más importante que nunca para estar al día.

 

El aprendizaje permanente es una parte integral de nuestras vidas. No hace mucho tiempo, las organizaciones de formación hicieron otra cosa que entregar el contenido de formación. En estos días una de las tareas más importantes es la de facilitar el aprendizaje en el lugar de trabajo. Probablemente, la mayor diferencia entre los dos modelos es el hecho de que las organizaciones de formación modernos de hoy necesitan para proporcionar plataformas y opciones – no sólo soluciones, tienen que asegurarse de que los empleados, los aprendices… sean capaces de interactuar entre sí, que sean capaces de colaborar y compartir su knwoledge.

 

El aprendizaje en el lugar de trabajo es fundamentalmente diferente de learnign en las aulas, estamos pasando del aprendizaje cerrado, al LEARNING AND WORK, al SOCIAL LEARNING y llegaremos, sin duda al LEARNING IS WORK.

 

Harold entra de lleno en un aprendizaje en el trabajo, tal cual, es decir, aprender a trabajar, y trabajar aprendiendo, en cambio Juan Domingo, insiste más en la educación y la incrsuta en el trabajo, cambia un modelo casi “ancestral” de educación de las escuelas y universidades, por una educación “enrolada· dentro del trabajo, “se aprende trabajando y el trabajo necesita de una formación de las personas de manera constante y permanente (life long learning)….

 

 

elearning2

 

 

 

 

JULIO

La universidad, ¿es inteligente?

 

El conocimiento y el trabajo docente cada vez valen menos por sí mismo y más por sus capacidades para producir valor económico, que llega a realizarse bajo la forma del arancel universitario. Esta transformación se concreta en la organización del trabajo, al que pretende modernizar y racionalizar, cuando en realidad se trata de extender la dominación del capital sobre el trabajo.

Sin embargo, la universidad también se ve afectada por las crisis socio-económicas y socio-ambientales globales, que se pueden expresar como una función de una crisis más amplia de reproducción social o sociabilidad. A medida que el trabajo de académicos y estudiantes es impulsado cada vez más por una mercancía-valoración arraigada en la medición del rendimiento, la capacidad de los académicos y estudiantes para responder a las crisis desde el interior de la universidad se ve limitada por el mercado. Uno de los momentos centrales de este proceso es la cuantificación -en el sentido de Desrosières A. (2008)es decir la normalización y medida del trabajo: esta operación consiste en descontextualizar el trabajo, vaciarlo de su sentido específico de forma que se pueda comparar de manera puramente cuantitativa con otro trabajo científico y, en última instancia, con cualquier trabajo.

 

 

AGOSTO

METODOLOGÍA EN LA INVESTIGACIÓN EN TECNOLOGÍAS EDUCATIVAS.

Mi Caso se titula E-LEARNING-INCLUSIVO, es una investigación con una plataforma de trabajo en la que ya colaboran muchas personas y organizaciones del mundo encuadrada en https://juandomingofarnos.wordpress.com, la cuál pretende establecer los cauces de una transformación en los aprendizajes basados en los Usuarios, en la democratización de la brecha digital y en una alfabetización digital de la sociedad.

 E-learning-Inclusivo, pretende crear y diseñar escenarios de aprendizaje con nuevas Tecnologías Educativas, dentro y fuera de la Escuela, haciendo una Educación inclusiva, por tanto personalizada al usuario y a su vez colaborativa, ya que este es el único medio de innovar y progresar hoy y mañana, “conectados en red”.

CONCEPTUALIZACIÓN

Pretendemos cambiar la manera de formar a distancia, conservando las características generales del e-learning, pero generando un nuevo enfoque, es decir, nuestro ELEARNIG-INCLUSIVO dejará de ofrecer unos formatos standar de formación on-line típicos, pero actualmente bastante tópicos, creando no una plataforma de actuación, sino una filosofía de trabajo científica y estructurada.

 

El USUARIO-ALUMNO, pasa a ser el protagonista y responsable ÚNICO de la formación, todos los mecanismos girarán alrededor de él, incluso y, sobre todo, el mismo proceso formativo , poniendo todos sus mecanismos metodológicos, organizativos y evaluativos, a la disposición “personalizada” del alumno-usuario.

(E-LEARNING-INCLUSIVO, establece unos parámetros sobre los Usuarios-Alumnos, sus planteamientos y sus prioridades, pasando a un primer plano y dejando leyes, normas y sistema en su segundo plano,…), nuestra investigación va por estos caminos y es por lo que justificamos su importancia.

El escenario nuevo de aprendizaje que diseñamos entorno  será más parecido a un espacio de intercambio social y virtual (y de mundos simulados) orientados a estimular la experimentación y desarrollar la creatividad en diversos contextos. ( Connectivismo de Stephen Downes)

 

Sistemas de evaluación dinámica: Sistemas de evaluación heterogéneos, semánticos y contextuales capaces de adaptarse a las características del proceso de aprendizaje de cada estudiante. Esta idea bajo el entendimiento que no todas las personas aprendemos lo mismo, bajo circunstancias iguales o desgiuales.(E-LEARNING-INCLUSIVO)

 …seguir leyendo en academia.edu

 

 

 

 

SEPTIEMBRE

 

El mundo automatizado de datos y algoritmos en el aprendizaje de refuerzo centralizado y en el descentralizado y complejo. (¿habrán roles en la educación por la influencia de las TIC?)

Preparando la conferencia de VERANO TIC (Erick Miranda) y entrando en el mundo automatizado de datos y algoritmos pienso en los procesos de formación o aprendizaje en la solución de aprendizaje profundo, normalmentecon modelos centralizados.

En esas arquitecturas, una serie de nodos centrales recopilan y seleccionan conjuntos de datos que se utilizan para capacitar a los modelos que se implementan en diferentes nodos de una red. Incluso en escenarios distribuidos como el aprendizaje de refuerzo de agentes múltiples que puede incluir decenas de miles de nodos ejecutando un modelo, los modelos de aprendizaje dependen de un puñado de nodos centralizados.

Con ello los DOCENTES y los ALUMNOS DE MEDIADOS DE ESTE SIGLO XXI primero entraran en un aprendizaje centralizado conceptualmente simple de implementar, pero increíblemente difícil de escalar.

Asistir selectivamente a un problema o una tarea novedosa; el análisis de uno mismo, de problemas y situaciones; a la realización, ejecución y evaluación de un plan; se llega a todo el camino hasta que la solución del problema. Cada paso es un enlace integral de la cadena de estrategia; y cada paso supone la elección estratégica por parte del solucionador de problemas….

El pensamiento crítico significa analizar y evaluar la información de manera independiente de los demás. Al pensar críticamente se puede aprender mejor. Ayuda a entender las ideas en el tema y recordar.

¿Cómo se ve el éxito? El objetivo general de la ayuda al aprendizaje suele ser muy amplio. Objetivos como “mejorar las habilidades de comunicación” o de habilidades, “proporcionar formación a los nuevos gestores”, si los aprendices son los responsables de su formación, será a ellos, naturalmente, aunque los acompañantes del mismo, los docentes (facilitadores), deberán modificar sus mentalidades pero también su preparación, que de momento no sólo son amplias, ni ofrecen garantía de lo que significaría aprender para lograr objetivos (personalizados, obviamente).

A veces “éxito” es simplemente disfrutar de tiempo dedicado al aprendizaje. Esto también es importante para que la identificación lo sepa.
¿Cuáles son las consecuencias del fracaso? Saber qué pasaría si los estudiantes no dominan la habilidad o información ayuda a entender el ID de la urgencia de la sesión de ejercicios y el nivel de competencia necesario.

Por lo tanto, ayuda a los ID de averiguar qué herramientas e instrumentos de trabajo pueden funcionar en una situación particular. Si la consecuencia de un fallo catastrófico es-un piloto sin saber cómo aterrizar el avión si el sistema automático a prueba de entonces se necesita entrenamiento para asegurar que la gente no lo hizo. Si la consecuencia de la falla es menor, está incorrectamente fuera del camino.
Pensemos en un escenario de Internet de las cosas con cientos de miles de dispositivos que recopilan datos y ejecutan un modelo de aprendizaje de refuerzo. Si cada agente necesita recopilar los datos, enviarlos a un servidor central e interactuar con ellos para optimizar su política de aprendizaje, la complejidad de la arquitectura aumenta linealmente con el número de agentes, con lo que las dificultades, tanto de aprendizaje como de APRENDER A APRENDER será cada vez más complejo y a demás dificultará el cambio de roles.

 

 

 

learning-personalized-logo1

 

OCTUBRE

 

La universidad evalúa y se evalúa.

Mejorar el aprendizaje, significa establecer unas estrategias adecuadas de control de calidad permanentes y dentro de ello la Universidad debe cambiar hacia planteamientos co-participes de toda la comunidad educativa, tanto de dentro como de fuera de la misma, así como actuar conjuntamente con el mundo del trabajo…

 

La pregunta de evaluación básica que se plantea es el grado en que mejorar el aprendizaje se ha logrado como resultado del rediseño del curso. Responder a esta pregunta requiere la comparación entre los resultados de aprendizaje asociadas a un determinado curso entregado en su forma tradicional y en su forma rediseñado.

 

  1. Establecer el método de obtención de datos:

 

  1. Fase Piloto

 

Esta comparación puede realizarse de dos maneras:

 

  1. Secciones Paralelas (tradicional y Reforma)

 

Ejecutar secciones paralelas del curso en formatos tradicionales y rediseñado y ver si hay diferencias en los resultados-un clásico de “cuasi-experimento”.

 

  1. Línea de base “antes” (tradicional) y “Después” (Reforma)

 

Establecer la información básica acerca de los resultados de aprendizaje de los alumnos de una ofrenda del formato tradicional “antes de” el rediseño comienza y comparar los resultados obtenidos en una posterior (“después”) ofrece el curso en su formato rediseñado.

 

  1. Fase de Implementación completa

 

Dado que no habrá una oportunidad para ejecutar secciones paralelas una vez que el rediseño hacia la plena aplicación, el uso de datos de referencia de a) una oferta del formato tradicional “antes de” el rediseño se inició, o b) las secciones paralelas del curso ofrecido en el tradicional formato durante la fase piloto.

 

La clave de la validez en todos los casos es: a) utilizar las mismas medidas y procedimientos de recogida de datos en ambos tipos de secciones y, b) para garantizar la medida de lo posible que las diferencias en las poblaciones de estudiantes tomando cada sección se reducen al mínimo (o en por lo menos documentado, de manera que puedan ser tomadas en cuenta.)

 

Elijir el método de medición

 

El grado en que los estudiantes se han dominado el contenido del curso apropiado es, por supuesto, la línea de fondo. Por lo tanto, algún tipo de evaluación creíble de aprendizaje de los estudiantes es fundamental para el proyecto de rediseño.

 

Cuatro medidas que se pueden utilizar se describen a continuación.

 

 

Ejemplo Secciones Paralelas: Durante la prueba piloto, la fase de los estudiantes serán asignados al azar a la tradicional o el curso rediseñado. Curso de “aprendizaje de los estudiantes serán evaluados en su mayoría a través del examen elaborado por los profesores del departamento de ambos. Objetivamente anotó cuatro exámenes se desarrollarán y se utiliza comúnmente en las secciones tradicionales y con nuevo diseño del curso.

 

Las tecnologías facilitan el proceso de ensamblaje.

 

La evaluación se entiende de dos maneras: una, sería EVALUAR PARA APRENDER y la otra (en un nuevo paradigma) LA EVALUACIÓN ES EL MISMO APRENDIZAJE.

 

En la primera se realizan toda clase de pruebas para ver el “nivel” donde están los estudiantes, qué grado, cantidad, calidad de aprendizajes han asumido…

 

 

En la segunda aprendizaje y evaluación serían la misma palabra, es decir, tendrían el mismo significado, EVALUACION=APRENDIZAJE.

 

 

 

 

NOVIEMBRE

 

Los aprendizajes a la carta ya estan aquí! (querer seguir como hasta hora es “perjudicar” el sistema, cuestionarlo, es mejorar)

Los Nano-Grados y el Aprendizaje en el lugar de Trabajo (fuera del aula) están ganando más terreno en el mercado empresarial del siglo 21. Ya no se trata de tener trabajo en las Mejores Empresas, sino de formar parte de los Mejores Proyectos.

 

Tres ideas son pues las que lo definen:

 

a-Ser una cartera de formación continua. La idea es ser un repositorio de recursos de formación que acompañe al alumno/cliente/usuario/profesional en su desempeño, en la parte de su vida profesional asociado a la empresa como empleado suyo o a productos de la empresa (ATT) en su área de servicios y productos (la palabra ampliamente es la clave en la expresión “ampliamente reconocido por la industria de la tecnología”).

 

b-Ampliamente reconocido por la industria, pero también por la universidad.

 

c-Más barato de obtener que un grado convencional, sobre todo porque excluye aquellos conocimientos que no son necesarios (las grasas de la formación universitaria convencional).

 

Ferenstein nos informa de que desde hace tiempo Udacity, otros proveedores de educación en línea, y las empresas más potentes de Internet se han comprometido a ofrecer algo que satisfaga estas necesidades. Lo dicen los peces gordos: La necesidad de este tipo de estudios lo explica claramente el co-fundador de Linkedin Reid Hoffman en “College Diplomas are Meaningless. This is How to Fix Them”. Igualmente Ferenstein informa del sentido y de la naturaleza de la alianza OEA dentro de la política de Obama de potenciar financieramente una formación de postgrado que sirva para la inserción profesional, expresado por el Vicegobernador de California, Gavin Newsom, y Sebastian Thrun.

 

 

La Alianza para la Educación Abierta estaría de acuerdo en reconocer una credencial de habilidades centradas en la industria. El nanodegree es el primer producto de este tipo. Se esperan otros junto con muchos otros que llegarán después de los socios originales: AT & T, Autodesk, etc.

 

Según Udacity los primeros nanogrados que van a ofertar son de preparación para trabajos como desarrollador de webs, desarrollador de aplicaciones iOS para móviles, desarrollador de aplicaciones Android para móvil o analista de datos y ahora ya se está generalizando. Es cierto que atacan las estructuras de la UNIVERSIDAD y de lo que algunos quieren llamar la PEDAGOGÍA, pero lo que no entienden es que ni la universidad ni la pedagogía de ayer sirve para hoy y no sorve porque las personas son otras, sus necesidades, apetencias… y su contexto es diatralmente opuesto al que otros hemos vivido.

 

 

Ferenstein anuncia que otros proveedores de educación en línea, tales como Coursera, están diseñando sus propias certificaciones, con las mismas características y con la misma distribución de tiempo. Que tienen aproximadamente la misma cantidad de tiempo, en función del curso de estudio.

 

Sin embargo ni en este post ni en el de Clarissa Shen, Announcing nanodegrees: a new type of credential for a modern workforce, que introduce el tema con más extensión, he visto que se avance nada en diseño instruccional ni en orientaciones sobre secuenciación, pasarelas, etc. Sólo hemos visto una literatura llena de promesas y de buena voluntad de resolver los problemas que han detectado.

 

DICIEMBRE

 

Mobile learning: solución estratégica a la transformación y automatización de los aprendizajes.

Para poder utilizar Mobile learning dentro del mundo del aprendizaje, bien sea por su potencialidad ubícua, como por su gran usabilidad y accesibilidad, hemos de tener claros algunos principios básicos. diseño, características de la formación, necesidades de los aprendices, accesibilidad…. y para que nadie pueda ver ni ventajas ni inconvenientes si no posicionamientos naturales de la sociedad y de la educación en la Sociedad de la Información y del conocimiento:

 

  1. ¿Cuál  será el objetivo del proyecto mLearning?

 

a-¿Es el desarrollo de un aprendizaje?

 

b-¿Es que así  se difunde el conocimiento?

 

c-¿Es para conseguir sus experiencias compartidas con otros en su red de aprendizaje?

 

El objetivo de un proyecto debe ser lo más claro posible, antes de la creación de cualquier otra cosa, ya que el objetivo será dar forma a lo que se necesita y cómo se puede montar con la mayor eficacia para alcanzar esa meta.

 

  1. Obtener todos los actores involucrados

La participación y el apoyo de todos es indispensable para cualquier aprendizaje tenga lugar. Con representantes de los interesados pertinentes probabilidades aumentan de que el ambiente de aprendizaje que se construye será aceptada por la mayoría y, como tal, será utilizada. Todos los interesados deben sentirse cómodo con el nuevo proyecto de formación, de lo contrario corre el riesgo de un grupo de abandonar la escuela. Cuanto antes obtener retroalimentación de todos los grupos interesados, más adaptado al ambiente de aprendizaje puede ser.

 

  1. ¿Cuáles son sus dinámicas de los educandos previstos
    Peer-to-peer – por ejemplo, ingenieros o estudiantes de tecnología a anotar las reparaciones rápidas que hicieron para los casos particulares y compartir esas soluciones, mientras que también proporciona información sobre los demás, o uno-a-muchos: el especialista o experto o compartir sus ideas con los demás sus para ponerse al día en nuevas innovaciones, el conocimiento, los cambios …. La dinámica del aprendiz  tendrá un profundo impacto en el diseño general del entorno de aprendizaje o la arquitectura del curso y las herramientas que se utilizan para diseñar el ambiente de aprendizaje.

…………………………………………………………………………………………………………………………………………………………………..

Quizás hayan Blogs más elegantes, más vistosos y también con metyodologías a la moda, pero no lo duden, pocos habrán que sean más divergentes, disruptivos y llenos de ideas que representen el presente y el futuro de la sociedad, la educación, las tecnologías…

juandon

Xti-Kw6wD-oS83AKFteYGDl72eJkfbmt4t8yenImKBXEejxNn4ZJNZ2ss5Ku7Cxt

 

La Inteligencia artificial permite llegar a un aprendizaje no supervisado y personalizado.

Juan Domingo Farnos Miró

 

32944225_10217024194623464_535350480692314112_n

Vihar Kurama and Juan Domingo Farnos

https://towardsdatascience.com/unsupervised-learning-with-p…

Unsupervised Learning with Python – Towards Data Science By Vihar Kurama

Yan Lecun, director de investigación de IA, explica que el aprendizaje no supervisado (máquinas de enseñanza para aprender por sí mismos sin tener que decir explícitamente si todo lo que hacen es correcto o incorrecto) es la clave de la IA “verdadera”.

“Utilizamos un software que permita a los estudiantes a aprender segun su plantemiento personalizado permitirá a los profesores hacer frente a las clases más grandes de manera efectiva, ya que el acompañamiento será as u vez más moderado, debido al autoaprendizje que como consecuencia se produce.

https://es.linkedin.com/…/software-para-un-aprendizaje-pers… SOFTWARE PARA UN APRENDIZAJE PERSONALIZADO! By Juan Domingo Farnos

Entramos en una época de fronteras porosas entre la inteligencia humana y la inteligencia artificial (con razón llamamos “inteligencia artificial”). Necesitamos una prueba de Turing para decidir si una entidad es humano o no. Si solicitamos algo en línea, como comprar, aprender, un billete de avion…es posible que tengamos que demostrar, que no somos un BOT, una máquina. Y, cuando se trata del desafío que enfrenta la educación – la forma de proporcionar una educación de calidad para un gran número de estudiantes a un costo reducido – la tentación de cruzar la frontera hombre-máquina y dejar que las máquinas (es decir, algoritmos) hagan el trabajo pesado es casi irresistible, es más, ya no es una tentación, realmente es una necesidad.

Las máquinas, las TIC, la internet… proporcionan información más rápido de lo que nadie podría haber imaginado, pero el aprendizaje es dar sentido a la información y el descubrimiento de su significado, el verdadero objetivo de la educación, y con las máquinas aun no lo hemos conseguido, aunque algunos estemos en ello

La máquina, en las tecnologías de aprendizaje adaptativo, se ha hecho cargo: el algoritmo es la creación de itinerarios de aprendizaje, y no lo que haga el alumno. Este enfoque podría entenderse como un intento de “aprendizaje semi-pasivo.” Esto no quiere decir que no haya usos de las tecnologías de aprendizaje adaptativo, pero es que decir que este enfoque sólo puede ser un elemento de un camino de aprendizaje humano impulsado .

 

Aprendizaje de adaptación y de personalización para la mejora continua del desempeño de impacto y su ampliacion continuado. Aprender en un marco de conocimiento que se utiliza para identificar oportunidades de utilizar herramientas de conocimiento de gestión en áreas específicas – gestión de la información, la comunicación interna y externa, el aprendizaje de seguimiento y evaluación orientada a alentar las innovaciones y la experimentación – para mejorar la ejecución de un proyecto….

la investigación muestra que el método de enseñanza tradicional no contribuye al aprendizaje efectivo, y no utiliza el potencial de la tecnología (Jonassen, Norton & Wiburg, Sandholtz, Ringstaff, & Dwyer, McCormick & Scrimshaw2). De hecho, muchos creen que una buena herramienta puede ser inútil si no es integrada dentro de estrategias efectivas de enseñanza.

El aprendizaje debe ser activo para que sea más ameno , riguroso y atractivo. Realizar aprendizajes más activos…, profesores y estudiantes como socios en el aprendizaje pueden diseñar co-lecciones y estrategias de evaluación juntos. Ellos pueden usar la evaluación como aprendizaje para reflexionar sobre su aprendizaje como sucede, en lugar de esperar hasta que un examen o prueba de fin de año. Todo esto puede suceder con mayor eficacia cuando cada estudiante tiene la tecnología que permite acceder a los contenidos con un profesor que le ayude y guíe…

Tenemos que personalizar el aprendizaje para nuestros educadores y nuestros estudiantes …

La Evaluación para el aprendizaje (diferenciación) se produce durante todo el proceso de aprendizaje. Es interactiva…-

 

 

 

 

26047232_10215767531767678_3359306051841904538_n

 

 

 

 

Sólo un ser humano realmente puede personalizar todo lo que él o ella lo hace. Es la era de la personalización, pero eso sólo significa ayudar a cada uno de nosotros para pasar menos tiempo en los detalles y más tiempo en las actividades humanas importantes, como la imaginación, la creatividad, el descubrimiento, la integración, la intuición, ..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico…”

https://www.hometownsource.com/…/article_ba68c642-57b0-11e8…

“Agilidad cognitiva Fortaleza. Curiosidad. Fluidez técnica. Pensamiento crítico. Empatía. Trabajando en equipo con otros diversos. Resolviendo problemas complejos. Determinación. Analítica y diagnóstico. Valor de la falla Comunicación. Hambre para aprender Profundo autoconocimiento

Estas son las habilidades del futuro. Algunos de nosotros nos hemos referido a estas cualidades como “habilidades blandas”.

Entonces, ¿cómo deberían verse las escuelas y los lugares de aprendizaje en 2030? ¿Cómo ayudamos a los estudiantes a competir con máquinas inteligentes? ¿Cómo preparamos a nuestros estudiantes para navegar la conexión global generada por la tecnología? En Hopkins, nuestros maestros se dan cuenta de que ya no son los únicos proveedores de conocimiento e información. La tecnología se aprovecha como una herramienta para proporcionar a los estudiantes plataformas de aprendizaje que les ayuden a analizar, diagnosticar, trabajar en equipo, pensar críticamente y crear.”

By

Rhoda Mhiripiri-Reed

 

 

 

 

 

safe_image.php

 

 

 

 

Si dentro de unos 20 años la educación y el trabajo serán totalmente diferente a los de hoy, es más, a lo mejor ni siquiera los términos que empleamos para nombrarlos a lo mejor ni siquiera son los mismos, hoy necesitamos no solo entender que debemos aprender y trabajar para hoy, sino para mañana y para ello a través de las habilidades blandas que llevaran a cabo personas frelance, eso seguro, contrataciones basadas en proyectos, creando una economía gig en la que menos personas tienen puestos de trabajo tradicional a tiempo completo.

En el futuro, los puestos de trabajo podrían requerir que las personas desarrollen habilidades flexibles a corto plazo para transferirse frecuentemente entre trabajos o tareas, en lugar de enfocarse principalmente en el conocimiento académico específico enfatizado en las medidas de prontitud actuales, o lo que es lo mismo, las titulaciones oficiales van a perder toda su influencia social (perderán no solo el monopolio, sino que desaparecerán, ya no tendrán sentido, esto “está cantado”).

Las habilidades más flexibles, tales como aquellas enfocadas en el desarrollo socio-emocional, prometen ayudar a los estudiantes a volverse resistentes, reflexivos, resilientes y capaces de formar conexiones y relaciones positivas…. https://es.linkedin.com/…/habilidades-blandas-el… Habilidades blandas: el funcionamiento futuro de la educación-trabajo!

Al proponer una nueva base para la preparación basada en estas habilidades sociales y emocionales básicas, estamos seguros que encajarán perfectamente en una nueva sociedad con otra cultura y un paradigma de paradigmas donde no solo trabajo y aprendizaje sean lo mismo, sino que la educación en general de la misma sociedad esté conformada por una nueva manera de entender el orden social.

En la “nueva educación global” (cuya sinergia con las N.T. llegó para quedarse de modo irreversible), aparece la apremiante necesidad de reevaluar el actual currículo tradicional estandarizado de nuestros Sistemas Educativos, el cual se caracteriza por la presencia de contenidos académicos fijos, aislados, secuenciales y descontextualizados, basado en clases expositivas (con herramientas poco interactivas), el apuntismo y una conducta sumisa del estudiante, aunado a un “encriptamiento”, por parte del docente, en su forma de enseñar y de evaluar.

 

 

 

 

 

0

 

 

 

 

En esta reevaluación curricular se tendrá que asumir como válida, la inconveniencia de definir un currículo comprehensivo, a la luz de una Sociedad de Aprendizaje donde la información le llega al alumno por variadas vías y muy especialmente por la Internet, obligando a un cambio en el rol del docente desde una “autoridad distribuye conocimientos” hacia un sujeto que crea e instrumenta ambientes de aprendizaje estimulantes y motividad que ores, donde se implica a los alumnos en actividades apropiadas en aras de poder construir su propia compresión del material a estudiar, participando paralelamente en el trabajo con los alumnos como compañeros en el proceso de aprendizaje; todo ello en el seno de una institución educativa más flexible, que sea igualmente negadora de la instrucción memorística

En lo inmediato referenciaremos someramente algunos de estos Ambientes Distribuidos de Aprendizaje, dedicándole posteriormente capitulo aparte a la Multimedia e Internet: Educación Virtual: entendida como un sistema de educación “construido” sobre una estructura cultural computacional, sustentada en el manejo de las tecnologías de información, de comunicación, de redes electrónicas y de amplias interfaces, desarrollado en ambientes multimediales, multimodales, multicanales, y conexión a Internet, con la particularidad que el estudiante puede acceder a contenidos en línea de acuerdo con sus necesidades específicas de tiempo y espacio (responsabilizándose y adquiriendo compromisos).

 

images

Juan Domingo Farnos

Machine learning: ¿personalized learning automatizado?

juandon
istock-139960401_0
Estamos ya convencidos que la web ofrece la tecnología perfecta y el medio ambiente para el aprendizaje individualizado porque para los aprendices puede ser identificativa, el contenido se puede personalizar específicamente, y el progreso del alumno puede ser monitoreado, apoyado y evaluado.
 
Tecnológicamente y técnicamente, los investigadores estamos haciendo progresos hacia la realización del sueño del aprendizaje personalizado con la tecnología de objetos de aprendizaje (para algunos adaptativos, para nosotros, nada más lejos de la realidad, no hay nada de adaptación, si no de personalización, que no es lo mismo) y eso el machine learning puede ayudarnos a conseguirlo.
 
Sin embargo, dos consideraciones importantes están siendo ignoradas o pasadas por alto en el cumplimiento del sueño de personalización con machine learning:
 
Lo “adaptativo” es el ‘ajuste de una o más características del entorno de aprendizaje’. Estas acciones adaptativas tienen lugar en tres áreas distintas:
 
          1-Apariencia/forma: Cómo se muestran al aprendiz las acciones de aprendizaje, como contenido, incorporación de texto, gráficos o videos, etc. La mayoría de las plataformas adaptativas de hoy día lo denominan “consumo de contenido” y esperan que el conocimiento se adquiera simplemente leyendo el contenido.
 
          2-Orden/secuencia: Cómo se ordenan y se bifurcan las acciones de aprendizaje según el progreso del alumno, como las rutas de aprendizaje.
 
          3-Orientación hacia el objetivo/dominio Las acciones del sistema que conducen al aprendiz hacia el éxito (excelencia personalizada)
 
Esto permite que se realicen cambios según los resultados óptimos de aprendizaje, el grado de dificultad y el creciente nivel de conocimientos o aptitudes del alumno.
 
 
El término “aprendizaje personalizado” es una palabra de moda los educadores suelen ser una alternativa a la “talla única” la enseñanza. Por desgracia, el mensaje es confuso. ya que aparecen diferentes definiciones parecidas: la instrucción individualizada, personalizada y diferenciada:
          -La individualización se refiere a la instrucción que se estimula a las necesidades de aprendizaje de los alumnos diferentes. Metas de aprendizaje son los mismos para todos los estudiantes, pero los estudiantes pueden progresar a través del material a diferentes velocidades de acuerdo a sus necesidades de aprendizaje. Por ejemplo, los estudiantes pueden tomar más tiempo para avanzar en un tema determinado, no tome los temas que cubren la información que ya saben, o temas repetidos que necesitan más ayuda sobre.
          -La diferenciación se refiere a la enseñanza que se adapta a las preferencias de aprendizaje de los alumnos diferentes. Metas de aprendizaje son los mismos para todos los estudiantes, pero el método o enfoque de la enseñanza varía en función de las preferencias de cada alumno o lo que la investigación ha encontrado funciona mejor para los estudiantes como ellos.
          -La personalización se refiere a la instrucción que se estimula a las necesidades de aprendizaje, adaptados a las preferencias de aprendizaje, y adaptados a los intereses específicos de los diferentes alumnos. En un entorno que es totalmente personalizado, los objetivos de aprendizaje y contenidos, así como el método y el ritmo de toda puede variar ( la personalización incluye la diferenciación e individualización)
Aprendizaje personalizado no es “Instrucción Personalizada”:
          -Personalización de los medios de aprendizaje …
          -Los estudiantes saben cómo aprenden para que estén preparados para el presente y su futuro como ciudadanos del mundo.
          -Los estudiantes son los compañeros de los alumnos y compañeros de los diseñadores del currículo y el ambiente de aprendizaje.
          -Los estudiantes deben  poseer y manejar su propio aprendizaje.
AUTOMOTIVARSE-01-INED21
Cada estudiante es único y aprende de diferentes maneras. Diferenciación de instrucción significa que el profesor se adapta el plan de estudios existente para satisfacer las diferentes necesidades de cada estudiante en su salón de clases. El profesor se convierte en la persona más trabajadora en el aula. La individualización significa que las empresas de la maestra y el libro de texto de crear varios niveles de currículo para satisfacer las diferentes necesidades de todos los estudiantes. Esto significa que usted paga más a las empresas de libros de texto para preparar el plan de estudios o encontrar múltiples formas de enseñar a un área de contenido que cumpla con los estilos de aprendizaje variados y niveles de lectura en el aula.
La diferenciación y la individualización de la enseñanza es el maestro-céntrico, a nivel de grado, y basada en estándares. Los profesores pueden utilizar estas técnicas para presentar el contenido. Sin embargo, el estudiante necesita para ser los más difíciles de las personas que trabajan en el aula. Los maestros deben enseñar a sus alumnos a pescar y no el pescado para ellos. En un ambiente de aprendizaje personalizado, el profesor no tiene por qué ser el único experto. La ventaja de la tecnología es que los estudiantes puedan utilizar los contenidos y que los expertos con su profesor.
Aprendizaje personalizada significa que los estudiantes impulsan su aprendizaje y el profesor es el guía al lado, el co-diseñador de su aprendizaje, y  un facilitador para asegurarse de que los estudiantes están cumpliendo con sus objetivos de aprendizaje.
La consideración que falta se refiere a una persona en su totalidad la comprensión acerca de las fuentes psicológicas clave que influyen en cómo las personas quieren y tienen la intención de aprender en línea. Las soluciones convencionales, principalmente cognitivas (que se centran en cómo el proceso aprendices, construir y almacenar conocimiento) ofrecen una visión restringida de cómo las personas aprenden y demasiado a menudo conducen a soluciones inestables o ineficaces de aprendizaje en línea. Una persona en su totalidad incluye emociones e intenciones como factores críticos en el proceso de aprendizaje. También falta la integración de los fines de instrucción, los valores y las estrategias en el diseño, desarrollo y presentación de contenidos (objetos).
 
 
La Personalización puede tomar muchas formas, ya que se adapta el contenido, la práctica, la retroalimentación, o de dirección para que coincida con el progreso y el rendimiento individual. Por ejemplo, dos personas que utilizan la misma instrucción al mismo tiempo pueden ver dos conjuntos completamente diferentes de los objetos de aprendizaje. El mayor beneficio de la personalización de aprendizaje es la capacidad para hacer más fácil la instrucción compleja, presentando sólo lo concreto que será útil o aceptado por cada uno.
 
 
 
 
          a-Si el voto es uno de los factores más importantes para mejorar el trabajo del aprendiz y los resultados….a…
 
          b- ¿qué esperamos? que todos en los centros puedan intervenir por igual…
 
          c-¿no sería mas justo?
 
 
 
Si el modelado del proceso de retroalimentación permite a los jóvenes desarrollar su propia autorregulación de mejorar el trabajo….
 
¿Cómo no un centro cualquiera deja de implementar toda una política de la regeneración de la universidad, escuela que tenga en cuenta los muchos matices de cada tema?
 
La retroalimentación es importante. Nos retroalimentamos con los aprendices a a diario, es más, nosotros también lo somos, pero si podemos hacerlo ayudandonos de la Machine learning (La tecnología Machine Learning está abriendo nuevas oportunidades para las aplicaciones de software en temas de retroalimentación, al permitir a los ordenadores aprender de grandes y de pequeñas cantidades de información sin necesidad de ser programados explícitamente, aprendiendo de los errores producidos y segun los datos personalizados, readaptarlos en otras direcciones, lo cual nos permite optar por otras opciones de aprendizaje…)
 
En este sentido, los sistemas Machine Learning representan un gran avance en el desarrollo de la inteligencia artificial, al imitar la forma en que aprende el cerebro humano -mediante la asignación de significado a la información y darnos más posibilidades de opción segun nuestros personalismos.
 
Figura-1-Marco-de-retroalimentacion-para-explicar-las-interacciones-recursivas-entre-la
El Machine learning identificará y categorizará las entradas repetitivas y utilizar la retroalimentación para fortalecer y mejorar su rendimiento. Es un proceso similar a cómo un niño aprende los nombres y la identidad de los animales, haciendo coincidir las palabras con las imágenes; el ordenador, poco a poco, aprende a procesar la información correctamente.
 
 
La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.
 
 
 

 

 

 

 

“Sin entrar en detalles complejos sobre los diferentes paradigmas de Inteligencia Artificial y su evolución podemos dividir dos grandes grupos: la IA robusta y la IA aplicada.

 

  • Inteligencia Artificial robusta o Strong AI: trata sobre una inteligencia real en el que las máquinas tienen similar capacidad cognitiva que los humanos, algo que, como los expertos se aventuran a predecir, aún quedan años para alcanzar. Digamos que esta es la Inteligencia de la que soñaban los pioneros del tema con sus vetustas válvulas.
  • Inteligencia Artificial aplicada Weak AI (Narrow AI o Applied AI): aquí es donde entran el uso que hacemos a través de algoritmos y aprendizaje guiado con el Machine Learning y el Deep Learning.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo. Los programadores deben perfeccionar algoritmos que especifiquen un conjunto de variables para ser lo más precisos posibles en una tarea en concreto. La máquina es entrenada utilizando una gran cantidad de datos dando la oportunidad a los algoritmos a ser perfeccionados.

Desde los primeros albores de la temprana inteligencia artificial, los algoritmos han evolucionado con el objetivo de analizar y obtener mejores resultados: árboles de decisión, programación lógica inductiva (ILP), clustering para almacenar y leer grandes volúmenes de datos, redes Bayesianas y un numeroso abanico de técnicas que los programadores de data science pueden aprovechar” XAKATA

El sueño de entregar el aprendizaje personalizado utilizando objetos de aprendizaje que se ajusta al tiempo real, en cualquier lugar, en cualquier momento, justo suficientes necesidades del estudiante está a punto de convertirse en una realidad. Hoy en día, junto con muchos desarrollos importantes en la psicología de la instrucción, estándares abiertos, lenguajes de marcas estructuradas para la representación de datos interoperables, y el cambio de control de flujo de instrucción desde el cliente al servidor, una base totalmente nueva está haciendo realmente personalizado de aprendizaje en línea .

“Poco a poco las características subversivas de la computadora fueron erosionados distancia: En lugar de cortar a través y así desafiar la idea misma de fronteras temáticas, el equipo ahora se define un nuevo tema; en lugar de cambiar el énfasis del currículo impersonal a la exploración en vivo emocionados por los estudiantes, el ordenador se utiliza ahora para reforzar los caminos de la escuela. Lo que había comenzado como un instrumento subversivo de cambio fue neutralizado por el sistema y se convierte en un instrumento de consolidación”..… Audrey Watters

Lo que hace que la programación ed-tecnología “adaptable” es que la IA evalúa la respuesta de un estudiante (por lo general a una pregunta de opción múltiple), luego sigue con la “segunda mejor” cuestión, cuyo objetivo es el nivel “adecuado” de dificultad. Esto no tiene por qué requerir un algoritmo especialmente complicado, y la idea en realidad basada en “la teoría de respuesta al ítem”, que se remonta a la década de 1950 y el ascenso de la psicometría. A pesar de las décadas siguientes, sinceramente, estos sistemas no se han vuelto terriblemente sofisticados, en gran parte debido a que tienden a basarse en pruebas de opción múltiple.

Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde la evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.

https://juandomingofarnos.wordpress.com/…/los…/Los algoritmos sales de las Universidades de Juan Domingo Farnós Miró

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

 

 

strategie-controllo-mentale

 

 

 

 

Este precio informativo se compone de DATOS ESTANDARIZADOS a través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformará en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico, pero siempre seremos nostros quienes elijamos en última instancia el camino que vaos a seguir, frente a las múltiples propuestas en “beta” que nos presentará la tecnología..

 

 

 

 

 

Si partimos de la idea de que la REALIDAD es múltiple, podemos entender por qué aprender en la diversidad no tiene porque llevarnos a un punto común-….esta premisa es fundamental para entender el pensamiento crítico en los aprendizajes y sin la cuál sería imposible llevar a cabo aprendizajes basados en la diversidad-INCLUSIVIDAD (EXCELENCIA)…

…todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA), por medio de una mezcla de inteligencia artificial y algorítmica.

 
 
El beneficio más evidente de estas innovaciones es la creación de una ecología de aprendizaje que comparte recursos de grandes depósitos de contenidos en los objetos de aprendizaje que se comparten de forma individual, ampliamente, y de forma más económica.
 
Esto permitirá que la “máquina” en realidad adapte sus interfaces de usuario, el contenido de aprendizaje y la experiencia en sí misma, y presentar información de una manera que se adapte a las preferencias de los humanos….eso sin duda nos lleva a la VERDADERA SOCIEDAD INTELIGENTE.
Todo ello ocasionará un Aprendizaje integrado – aprendizaje en red que estará integrado en cada dispositivo, cada herramienta, cada recurso físico de LAS PERSONAS, no hay necesidad de una formación específica, la información más reciente estará disponible sólo en el tiempo, de fuentes auténticas COMPUTACIÓN UBÍCUA E I-BICUA, a juzgar por el valioso análisis de la red, siempre con el contexto y que las personas prestemos nuestra ayuda.
 
 
Por tanto debemos elegir entre dos posturas que condicionarán el futuro de la Sociedad, ya que la Educación es una de las principales piedras angulares en que gravita cualquier hábitat.
 
Una, sería seguir buscando mejoras, modificaciones, regeneraciones…a los Sistemas Educativos de amplio aspectro que venimos realizando las últimas generaciones-que sería seguir con una Educación eminentemente formal, estandarizada,
 
homogeneizadora…basada en Curriculums prescriptivos e igualadores… y enfocada a dar resultados que generen titulaciones previstas para que luego deriven en la sociedad en los trabajos clásicos de siempre…..
 
 
 
Ahora la Sociedad debe decidir como quiere que sea la Educación, cómo quieren que la innovación que se vaya produciendo, se desarrolle, …si es que realmente desean que esté, en cierta manera enmarcada y aceptada por todos,… una Educación natural, por tanto eminentemente no formal, informal, que pueda o no llegar a la formal, pero por medio de mecanismos no dados, es decir, de ir siempre hacia resutados finalistas, consabidos, previstos…sino de planteamientos creativos, constructivos y sobretodo priorizando la conectividad entre personas y/u organizaciones y estableciendo mecanismos generadores de procedimientos abiertos, flexibles y autoregenerables, donde la retroalimentación producto del ENSAYO-ERROR, sea la base del funcionamiento normal de la sociedad y eso se consigue con la ayuda del Machine learning.
 
 
 
 
Un artículo de Brighton analiza el rol de los nuevos medios digitales, los“UBIMEDIA” que por sus características –multifacéticas, convergentes,colaborativas y cooperativas, móviles- tienen el potencial de empoderar a las personas y crear una mayor cultura participativa.En este contexto las instituciones que tradicionalmente tenían la potestad de establecer aquello que está bien y lo que no lo está, hoy se ven amenazadas por nuevas reglas del juego. Estos retos nos llevan a pensar en nuevos perfiles de profesionales.
Hacen falta perfiles híbridos digitales-analógicos que sean capaces de traducir conocimiento de una comunidad a otra y que puedan generar valor al momento de conectar conocimientos. Necesitamos de habilidades multiplicadas y desarrollo de actitudes creativas, las cuáles se presentan como elementos claves. Es necesario a pensar en un aprendizaje mejorado, que no se limite a una disciplina o certificación, sino que sea permanente, distribuido y escalable, cuya trazabilidad esté en manos de la mayor parte de la población, cada uno con sus características…
 
Poder personalizar el proceso de aprendizaje a cada estudiante es vital para facilitar su progreso y conseguir que utilice todo su potencial. Es necesario adaptar la enseñanza a las necesidades de cada alumno para lograr atender sus dificultades y aprender a potenciar sus puntos más fuertes. Aquí interviene la trazabilidad educativa, un elemento importantísimo en este proceso.
 
¿Cómo funciona la trazabilidad educativa?
 
Utilizar herramientas digitales orientadas a este objetivo nos permite acceder a una gran cantidad de datos que nos aportarán la información necesaria para personalizar la educación a cada alumno. Aunque varían según la plataforma, generalmente podemos agruparlas en dos categorías:
 
          a-Seguimiento de uso: Se refiere a los datos relacionados con las conexiones a la plataforma y a cada recurso. Cuántas veces la visitan, cuánto tiempo dedican a cada recurso, cuántas veces acceden a ellos…
          b-Seguimiento de actividades: Suelen incluirse dos tipos de actividades, las autocorrectivas y las entregables. Las primeras, de respuesta cerrada (tipo test), tienen la ventaja de que son corregidas de forma automática por la aplicación, lo que ahorra un tiempo considerable al docente.
 
          c-Se podrá acceder a todos los datos relativos al tiempo dedicado, si han necesitado salir de la página para buscar más información, los intentos realizados, etc. Además, también puede medirse la participación en foros y debates.
Es también habitual que las herramientas nos permitan elaborar un seguimiento del progreso de los alumnos. Para ello, generan automáticamente informes a partir de las diferentes actividades y el uso de la plataforma, pudiendo referirse al conjunto de la clase o a estudiantes individuales.
 
 
 
1185323
Esta evidencia es convincente, pero lo que está claro es que el estado de la investigación en este campo todavía tiene que encontrar maneras efectivas y eficientes de muestra (por ejemplo, a través de productos de trabajo del alumno, tener la suficiente capacidad de encontrar caminos alternativos a las posibles respuestas con otras preguntas..
 
Hoy es fundamental analizar nuevas perspectivas para pensar el aprendizaje a la luz del acceso abierto y distribuido al conocimiento. La idea es sumergirnos en sus luces y sombras, la línea es difusa y las tecnologías son invisibles y naturales, para que su verdadera ayuda sea adecuada a las necesidades personalizadas y personales de las personas…
 
 
En esta exploración nos preguntamos no sólo porqué la resistencia al cambio de las organizaciones educativas sino que buscamos hacer un zoom a aquellos espacios de exploración que sí están abriendo oportunidades que son importantes de incluir en el radar.
 
 
Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde l”a evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.
 
 
Los objetivos de estos proceso pretenden hacer frente a las necesidades actuales y las oportunidades de aprendizaje, mediante esta analítica recogiendo los enfoques multidisciplinares pero complementarios de diferentes campos, tales como Ciencias de la Computación, Ciencias de datos, Matemáticas, Educación, Sociología…, eso si, deben ser siempre personalizados y con la responsabilidad de los propios aprendices.
Necesitamos por tanto:
 
          1–Análizar el aprendizaje basado en competencias, lo que nos llevará…
 
          2–Aprender y por tanto a realizar la propia evaluación (recordemos que cada aprendizaje lleva impreso consigo la evaluación, ya no como una medición, si no como parte del mismo) con los procesos de aprendizaje de los demás mediante el análisis de ruta de aprendizaje personal y social. Al mismo tiempo, el mecanismo de aprendizaje tecno-social personalizado nos permite que el aprendiz aprenda de acuerdo a su situación y objetivos.
 
          3–Establecer una ruta de aprendizaje individual lo podemos modelar para registrar su proceso de aprendizaje. Por tanto, el espacio de aprendizaje personal (PLE), sera siempre un espacio no lineal…, es en esta situación donde el pensamiento crítico actua de manera determinante, para manifestarse capaz de deducir las consecuencias de lo que cada uno sabe, y sabe cómo hacer uso de la información para resolver problemas, y buscar fuentes de información pertinentes para aprender más…
 
 
          4-Realizar un análisis de aprendizaje para la evaluación de las competencias genéricas y específicas:
               a-La integración de la analítica de investigación y aprendizajes educativos.
               b-Analíticas de aprendizaje y el aprendizaje autorregulado.
               c-Intervenciones y análisis de los diferentes aprendizajes, estudio de casos…
               d-Implementaciones de la analítica de aprendizaje.
               e-Analíticas de aprendizaje y efectos a largo plazo (estudios sobre la analítica de aprendizaje).
               f-Los avances teóricos en la analítica de aprendizaje.
               g-Replicación y validación cruzada de las investigaciones existentes.
               h-Aspectos éticos de la analítica de aprendizaje.
               i-Analíticas de aprendizaje y formulación de políticas (policy makers)
               j–Interoperabilidad para la analítica de aprendizaje.
 
 
 
Otro beneficio de la personalización es que cada vez que se personaliza, a aprender y almacenar un poco más sobre el conjunto único de un alumno, se aportan posiciones diferenciadas al aprendizaje social.
 
Esto no solo permite llegar a un mejor AUTOAPRENDIZAJE, si no también una manera más de “emprendimiento” y “apropiación” de la red, como “espacio” claramente de aprendizaje personalizado y socializador.
 
Esta “vinculación” que se establece, es propia incluso del funcionamiento cerebral, como muy bien dice George Siemens y diría mi amigo argentina Alicia Banuelos (una maravillosa Física)…”la sinapsis neuroal provoca que las neuronas se vinculen, se relacionen unas con otras”.
 
3244476858
El cerebro emite una especie de corriente de “relación” que con un poco de entrenamiento, que lo tengo y mucho, tengo que establecer relaciones entre todos e incluirlos, si es necesario en mis ideas para mejorarlas…
 
En una base de datos tradicional, el esquema de una tabla se aplica en tiempo de carga de datos. Si los datos que se están cargando no se ajusta al esquema, a continuación, se rechaza. Este diseño es a veces llamado esquema de escritura ya que los datos se comprueban con el esquema cuando se escribe en la base de datos y eso se puede extrapolar a lo que pretendemos que los alumnos aprendan del curriculum preestablecido.
 
Normalmente por otra parte, no comprobamos los datos cuando se cargan ,cuando los comentamos, explicamos… sino más bien cuando se emite una consulta. Esto se conoce como esquema de lectura.
Hay ventajas y desventajas entre los dos enfoques. Esquema de lectura hace que tengamos una carga inicial muy rápida, ya que los datos no tienes que ser leídos, analizados y serializados en el disco en formato interno de la base de datos.
 
La operación de carga es sólo una copia de archivo o de movimiento, y es lo que hacemos con los aprendizajes mecánicos de lectura y escritura (totalmente nefastos) es mucho más flexible: : considerar la posibilidad de dos o más esquemas para los mismos datos subyacentes, dependiendo del análisis que se realiza y de la persona que tenga que hacerlo (personalización en los procesos de aprendizaje).
 
En un futuro próximo creo que todo el aprendizaje será límites-less (Geoge Siemens). Todo el contenido de aprendizaje será computacional nada preestructurado. Todo aprendizaje será granular, con coherencia formada por alumnos individuales (inclusividad y ubicuidad de Juan Domingo Farnos)
 
 
Sistemas artificiales, como lo es la ENSEÑANZA, EL CURRÚLUM EDUCATIVO, LOS CONTENIDOS EDUCATIVOS, LAS MISMAS ACREDITACIONES (TITULACIONES) serán sustituidos,, por los modelos basados en la complejidad y la emergencia (DISRUPCIÓN)..
 
Pero las ideologías influyen en el diseño,influyen en la concepción de los SISTEMAS EDUCATIVOS, entonces el diseño limita las opciones futuras. No tenemos que mirar muy lejos para ver ejemplos de esta simple regla: aulas, el diseño de las actividades de organización del trabajo, la política y el funcionamiento de las organizaciones educativas (escuelas, universidades…) Lo que creamos para que sobreviva en una época sirve como neurosis para otra (esto creo que le gustaría a mi amiga Dolors Reig).
 
En la educación – especialmente en la tecnología de mejora de la educación – se nota el final de una época y el principio de otra, la propia OBSOLESCENCIA nos lo indica, lo que es más difícil de ver en la vida cotidiana de los espacios cerrados y obligatorios educativos..
 
Los asesores de educación y altavoces normalmente nos preguntamos “si un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”. Obviamente, esta es una afirmación absurda (incluso si pasamos por alto los retos de viajes en el tiempo). Los asesores de educación y algunos “voceros” normalmente declaran “si, un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”.
 
Por tanto pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.
 
Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.
 
“Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese planteamiento que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”
 
 
Hay muchas maneras de personalizar el aprendizaje. Sin embargo, al igual que los términos de estilos y la motivación del aprendizaje, la personalización es otro término mal definido. Para ser más específicos, se describe la personalización aquí con cinco niveles con creciente sofistificación, cada nivel que describe una estrategia de personalización específica. Desde los más simples a las más complejas, las cinco estrategias son:
 
(a) nombre reconocido;
 
(B) describe a sí mismo;
 
(C) segmentados;
 
(D) cognitivo-basada; y
 
(e) de base integral de la persona.
 
A lo mejor el “sueño de algunos de una educación autónoma y libre (solo realizable mediado con la Machine learning, AI, internet, TIC), no es tal sueño y es una realidad.
 
juandon

Algoritmos personalizados: el final de los patrones de aprendizaje! (Educación Disruptiva)

juandon

anisotropic

En los ultimos tiempos se están dando sos corrientes referentes al Big data y a a los Algoritmos (Inteligencia Artificial), los que predicen que significaran la “visualización” de una época con rayos y truenos, que nos tendra vigilados permanentemente ” Un artículo del periodista holandés Dimitri Tokmetzis demostró el año pasado hasta qué punto esto puede ir en los datos de montaje de retratos compuestos de lo que somos. Google sabe lo que busca y puede inferir no sólo qué tipo de noticias que lees en un domingo por la mañana y qué tipo de películas prefieres un viernes, qué tipo de porno que probablemente nos gustaría mirar y dejarnos boquiabiertos en la noche del sábado , lo que ha hecho que los bares y restaurantes cierren”….

La propuesta de Bentham para una Máquina total de la visibilidad puede ser menos significativa a la tesis de los universos de datos emergentes que sus contribuciones a la moral del utilitarismo y su supuesto de que se puede medir nuestro bienestar.

El panóptico es un tipo de arquitectura carcelaria ideada por el filósofo utilitarista Jeremy Bentham hacia fines del siglo XVIII. El objetivo de la estructura panóptica es permitir a su guardián, guarnecido en una torre central, observar a todos los prisioneros, recluidos en celdas individuales alrededor de la torre, sin que estos puedan saber si son observados”.

El efecto más importante del panóptico es inducir en el detenido un estado consciente y permanente de visibilidad que garantiza el funcionamiento automático del poder, sin que ese poder se esté ejerciendo de manera efectiva en cada momento, puesto que el prisionero no puede saber cuándo se le vigila y cuándo no”…. Panopticon

ste dispositivo debía crear así un «sentimiento de omnisciencia invisible» sobre los detenidos. El filósofo e historiador Michel Foucault, en su obra Vigilar y castigar (1975), estudió el modelo abstracto de una sociedad disciplinaria, inaugurando una larga serie de estudios sobre el dispositivo panóptico. «La moral reformada, la salud preservada, la industria vigorizada, la instrucción difundida, los cargos públicos disminuidos, la economía fortificada, todo gracias una simple idea arquitectónica.»Jeremy Bentham, Le Panoptique, 1780.

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

Este precio informativo se compone de DATOS ESTANDARIZADOS a través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La transformación es el cambio de una o muchas variables en el estudio.

Se transforman variables, por ejemplo, al remplazar los valores originales por logaritmos (transformación logarítmica). Frecuentemente los datos que son obtenidos no se ajustan a una distribución normal, por lo cual es inapropiado el ejecutar pruebas paramétricas

Muchas variables no se comportan de forma lineal o aritmética, por ejemplo las abundancias siguen un patrón exponencial.

En la educación básica se promueve que el sistema decimal es el único “natural”

Nunca vemos los algoritmos que hacen su trabajo, incluso a medida que nos afectan. Ellos producen en sus sistemas de cifrado, todo invisible, enterrado en cajas negras componer silencio sinfonías de ceros y unos….

Pierre Levy, el pensador de TUNEZ, propone una forma de procesar la información «codificandola» en algoritmos. Los humanos tenemos una habilidad muy especial, que es la de manipular símbolos. Y a lo largo de nuestra historia, cada mejora en esa habilidad ha producido cambios muy significativos a nivel económico, social, político, religioso, epistemológico, científico y educativo. Esos cambios, que trazan una evolución cultural, van desde los rituales y narrativas primigenios, la invención de la escritura, la creación de alfabetos y sistemas numéricos consensuados y permanentes, la fabricación de un artefacto tecnológico como la imprenta hasta arribar a la automatización de la reproducción en la difusión de símbolos.

Todos esos pasos aumentaron la posibilidad de almacenamiento de nuestra memoria, la expandieron, incrementaron la inteligencia colectiva y subieron un nivel en la escala evolutiva cultural.

En ese sentido, la propuesta de Lévy se aleja de la inteligencia artificial. La suya es una perspectiva completamente distinta: para él no se trata de crear máquinas inteligentes o más inteligentes que los humanos, sino de hacer a los humanos más inteligentes. Cada nivel de complejidad implica un tipo de conocimiento emergente nuevo y más poderoso, en el que todos los procesos cognitivos están aumentados. El último paso, es decir, aquel hacia el cual tendemos, sería el conocimiento algorítmico.

Y esa propuesta es la que hacemos nosotros (JUAN DOMINGO FARNOS https://juandomingofarnos.wordpress.com/…/algoritmos…/

INCLUSO DENTRO DE UN PROCESO transversal y multidisciplinar, para lograr nos lo eso, sino una autonomía en los aprendizajes y una personalizacion, como nunca hasta ahora se jha producido (POR TANTO TOTALMENTE ORIGINAL, apoyada en todo lo que les escribo, más las distintas potencialidades que tenemos de aprendizaje que tenemos las personas en nuestro cerebro y que les visualizo.

cerebro

http://www.pearson.com.ar/pte.php
http://thenewinquiry.com/…/the-algorithm-and-the…/ The Algorithm and the Watchtower
By Colin Koopman
Vagale, Vija “ERSONALIZATION OPPORTUNITIES IN THE MOODLESYSTEM” http://www.academia.edu/…/PERSONALIZATION_OPPORTUNITIES…

B. Mobasher, “Minería de Datos para la personalización,” La Web Adaptativo: Métodos y Estrategias de Web Personalización, P. Brusilovsky, A. Kobsa, y W. Nejdl, eds., Pp. 1-46, Springer, 2007.

AI Schein, A. Popescul, y LH Ungar, “Métodos y métricas para arranque en frío Recomendaciones”, Proc. 25 de Ann. Int’l ACM SIGIR Conf. Investigación y Desarrollo en Recuperación de Información, pp. 253-260, 2002.

S. McNee, J. Riedl, y JA Konstan, “Siendo precisa no es suficiente: Cómo métricas de precisión han herido de recomendación Systems,” Proc. ACM SIGCHI resúmenes sobre Factores Humanos en Sistemas Informáticos (CHI EA ’06), pp Extended. 1097-1101, 2006

No podemos confundir la aplicación de los algoritmos en el aprendizaje personalizado (personalized learning), algunos lo llaman educación personalizada, aunque realmente está muy lejos uno de la otra, como realizar clases particulares, tal como hacen algunas escuelas de Nueva York,utiliza el análisis de aprendizaje para desarrollar en las matemáticas personalizadas programas de aprendizaje. La Escuela con algoritmos de aprendizaje realiza evaluaciones cotidianas de estilos de aprendizaje y matemáticas de los estudiantes, y lo hace para producir un aprendizaje “lista de reproducción” personalizado para cada alumno. Esta lista se compone de clases particulares de matemáticas, que se ponen en el orden en que el algoritmo determina que es óptimo para el desarrollo de las habilidades matemáticas de los estudiantes. Ciertamente, Escuela de uno se apresura a señalar que este está destinado a complementar, no sustituir, la experiencia de un maestro individual”..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformará en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico, pero siempre seremos nostros quienes elijamos en última instancia el camino que vaos a seguir, frente a las múltiples propuestas en “beta” que nos presentará la tecnología.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

Si partimos de la idea de que la REALIDAD es múltiple, podemos entender por qué aprender en la diversidad no tiene porque llevarnos a un punto común-….esta premisa es fundamental para entender el pensamiento crítico en los aprendizajes y sin la cuál sería imposible llevar a cabo aprendizajes basados en la diversidad-INCLUSIVIDAD (EXCELENCIA)…

todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA, por medio de una mezcla de inteligencia artificial y algorítmica. (leer más…)

“Vamos ya a aprender dirante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese plantemaineto que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, unifrorme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodrse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”.

Este es nuestro campo de trabajo de los ALGORITMOS CON EL PERSONALIZED LEARNING https://juandomingofarnos.wordpress.com/tag/algoritmos/  Juan Domingo Farnós Miró

Proyección algorítmica y aprendices! (Ed. Disruptiva) By Juan Domingo Farnos

juandon

inteligencia-visual-espaial

Con el trabajo algoritmico que preconizamos debemos tener siempre presente, tanto en las ideas, el desarrollo propio de andamiaje-algoritmico, asi como en su posterior diseño, que deben ser capaces de analizar y llevar a cabo de manera pormenorizada y cuidadosa, conocer de que manera el aprendiz es capaz de aprender a aprender de manera personal y personalizada, por lo que estos siempre tendran garantizado un apoyo inestimable.

Los aprendices, dentro de la educación formal de manera sistematizada, y en la informal, de manera generalizada… pueden beneficiarse de la orientación de los algoritmos que apuntan al aprendiz hacia los sistemas de tutoría en línea, por ejemplo, que están demostrando tan eficaz como tutores humanos.

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

Estos algoritmos de personalización (Rauch, Andrelczyk y Kusiak, 2007), recopilar información del usuario y analizan los datos para que pueda ser transmitida al usuario en momentos específicos (Venugopal, Srinivasa y Patnaik, 2009). Por ejemplo, cuando estoy terminado de ver un video en YouTube o una película en digitaly he aquí que presenté con una lista de recomendaciones sobre los géneros que acabo consumidas. Esta idea funciona de forma similar con algoritmos de personalización que sería capaz de recomendar cursos o avenidas de aprendizaje basado en el conocimiento previo de las personas intervinientes en el proceso de aprendizaje ABIERTO, INCLUSIVO Y UBICUO .

¿El aprendizaje PERSONALIZADO tiene suficiente mejoría en el aprendizaje del aprendiz para justificar los costos de un sistema de aprendizaje más complejo?
¿Cómo podemos aprovechar algoritmos de aprendizaje automático “big data” y otros.. para la construcción de sistemas de aprendizaje personalizadas más eficientes y rentables?
¿Cómo pueden las ideas y resultados de la investigación de las ciencias cognitivas, utilizarlos para mejorar la eficacia de los sistemas de aprendizaje personalizados?.

Coincidiendo con el post de Pierre Levy: EML: A Project for a New Humanism. An interview with Pierre Lévy me pregunto ¿Cómo será el nuevo modelo y como será capaz de describir que nuestra forma de crear y transformar el significado, y que sea computable?….no tardará mucho, de eso podeis estar seguros.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

La gente tiene que aceptar su responsabilidad personal y colectiva. Porque cada vez que creamos un vínculo, cada vez que “al igual que” algo, cada vez que creamos un hashtag, cada vez que compremos un libro en Amazon, y así sucesivamente,… que transformemos la estructura relacional de la memoria comúny eso lleva, como venimos diciendo siempre, una responsabilidad y un compromiso.

Por lo tanto, también tenemos que desarrollar el PENSAMIENTO CRÍTICO Todo lo que encontremos en el Internet es la expresión de puntos de vista particulares, que no son ni neutrales ni objetivos, sino una expresión de subjetividades activas. ¿De dónde viene el dinero? ¿De dónde proceden las ideas? ¿Qué es el contexto pragmático del autor? etcétera…

juandon

Investigar y personalizar aprendizajes, una minería disruptiva! (Ed. Disruptiva)

 

juandon

data-minig-cd-rom-tutorial-mineria-de-datos-y-sql-1281547433

El aprendizaje adaptativo, la minería de datos para la Educación, la evidencia empírica, analítica de aprendizaje, la revisión sistemática.

Recientemente los investigadores y desarrolladores de la comunidad educativa comenzamos a explorar la posible adopción de
técnicas análogas para hacernos una idea de las actividades de los alumnos en línea . Dos áreas en fase de desarrollo orientados
hacia la inclusión y la exploración de las capacidades de datos grandes en educación son de Datos Educativos Minería  y
Analytics de Aprendizaje  y sus respectivas comunidades.
Pero la educación está tomando un rumbo diferente al que siempre hemos tenido en cuenta, el que hacemos por rutina, pero que realmente está impuesto, uniformizado, sujeto a patrones y es en estas investigaciones de extraer datos,, informaciones…

La medición, recopilación, análisis y presentación de datos sobre los estudiantes y sus contextos, a los efectos de
comprensión y optimizar el aprendizaje y ambientes en los que se produce todo este proceso es donde debemos hacer  una especial incidencia y donde podemos aprovechar para entrar en una dinámica de deslocalización, libertad de elección, tomarla como un elemento más dentro de la sociedad….
Es m´s fácil en este tipo de investigaciones, y más como las hacemos nosotros, nada a tener en cuenta con los sistemas actuales y pasados, por lo que aportamos a nuestra Educación Dosruptiva (learning is the work ) elementos demétodos, procesos de descubrimiento, conocimiento ….y mucho menos de analisis y “descubrimientos empíricos”, ya que en pocos lugares aún se llevan a término.
Mientras más aprendizaje ocurre en línea, se genera más datos y estos datos nos puede enseñar sobre el comportamiento del alumno que puede mejorar y personalizar la educación.

Según el Informe informe NMC Horizonte Educación Superior 2013 , esperamos ver adopciones generalizadas de dos tecnologías que están experimentando un creciente interés en la educación superior: juegos y gamificación , y el perfeccionamiento de la analítica del aprendizaje…

La motivación de esta crítica derivada del hecho de que se requiere evidencia empírica de los marcos teóricos a
ganar la aceptación en la comunidad científica. Una búsqueda en la literatura relevante no reveló ninguna revisión de empírico
evidencia del valor añadido de la investigación en ambos dominios.
Y cuando hablamos de la analítica, una entrada obligada es, por tanto, los datos de la minería de datos educativa será una parte de ella. Datos educativos,  Minería de Datos..se centra en el desarrollo de nuevas herramientas y algoritmos para descubrir patrones de datos y Aprendizaje Analytics se centra en la aplicación de herramientas y técnicas a escalas más grandes en sistemas instruccionales, pero si lo mezclamos podemos llegar a la personalización de los aprendizajes y esto ya forma parte de nuestra investigación de uanm anera más razonable.
El análisis del aprendizaje se ocupa esencialmente de los métodos para aprovechar los conjuntos de datos educativos para apoyar el proceso de aprendizaje, multidisciplinario, transversal…en el que involucramos el aprendizaje automático, la Inteligencia Artificial (AI), la información, kla recuperación de esta información, la retroalimentación, las estadísticas….
La detección, identificación y modelización del comportamiento del aprendizaje de los estudiantes es una investigación objetiva.
Buscamos identificar las estrategias de aprendizaje y cuando ocurren, nos referenciamos a estados metacognitivos, especialmente (Baker 2008, Levy 2011…)

Mejorar la práctica de la enseñanza y asegurar la calidad, es lo que buscan los innovadores, nosotros queremos establecer las bases de una forma de aprender diferente en una sociedad diferente. Basado en una situación de enseñanza concreto, los maestros y
los estudiantes investigan sistemáticamente con preguntas de investigación, mientras que la acción y la reflexión
ya nos corresponde a nosotros. (Hinchey 2008)
Aunque los objetivos detrás de la investigación-acción y LA son muy similares, la diferencia se puede ver en
el desencadenante inicial de proyectos de estudio relacionados. Mientras que los proyectos de investigación-acción por lo general comienzan con una pregunta sacada de la recogida de datos.
La gestión del conocimiento es el proceso de captura, distribución y uso eficaz del conocimiento, el cual aparece sobre el año 1990, en pocas palabras se podría decir que significa organizar la información de una organización y el conocimiento de manera integral…

La gestión del conocimiento es una disciplina que promueve un enfoque integrado para identificar, capturar, evaluar, recuperar y compartir todos los activos de información de una empresa y lo podemos aplicar en la formación (educación), por lo que es una manera de implicar directamente aprendizaje-trabajo.
 Estos activos pueden incluir bases de datos, documentos, políticas, procedimientos, conocimientos y experiencia en los aprendices, de manera individual, pero también social.
Lo que sigue siendo probablemente la mejor gráfica para tratar de exponer lo que es el  KM está constituido está el gráfico desarrollado por IBM para el uso de consultores de sus KM, basado en la distinción entre el material de recolección (contenido) y conectar a la gente, su manera de aprender y de trabajar…
La información dirigida y búsqueda de conocimientos
EXPLOTAR
  • Bases de datos, externa e interna
  • Contenido de Arquitectura
  • Información del Servicio de Apoyo (capacitación requerida)
  • las prácticas de minería de datos mejores y lecciones aprendidas / después de análisis de la acción


  • la comunidad y el aprendizaje
  • directorios, “páginas amarillas” (localizadores de experiencia)
  • hallazgos y herramientas de facilitación, trabajo en grupo
  • equipos de respuesta


SERENDIPITY y navegación
EXPLORA
  • Apoyo a la Cultura
  • perfiles actuales de concienciación y bases de datos
  • selección de artículos para alertar a los fines / push
  • las mejores prácticas de minería de datos


  • Apoyo a la Cultura
  • – espacios de las bibliotecas y salas de fiesta (literal y virtual), el apoyo cultural, trabajo en grupo
  • viajes y asistencia a las reuniones

(Hipótesis)

De: Tom corto, Consultor Senior, Gestión del Conocimiento, IBM Global Services

La taxonomía sería la forma “usual” de organizarlo, pero en una sociedad digital que quiere aprender con las herramientas y la mentalidad que se desarrolla en la misma de manera NATURAL, hace que se imponga la FOLCSONOMÍA, o sea, organizar las cosas según las necesidades y pecualiaridades de personas, organizaciones….

Nunca sabremos todo, pero que otros pueden ser capaces de ayudanosr, es el primer paso para convertirse en un profesional del aprendizaje. Esta es la aceptación de un mundo en constante cambio y que el conocimiento no es constante ni estático, sino dinámico..
Si nos unimos a otros en nuestro aprendizaje (en red-conectivismo), nuestro aprendizaje será mayor y mejor..Tener e incentivar que te critiquen ,por ejemplo a un blog personal, hace que mejoremos en espectativa de miras y ampliación de conocimientos, por lo que hace aún más evidente y claro que el aprendizaje ha de ser abierto.
El trabajo colaborativo es lo mejor, pero hace falta, por un lado, transparencia y por el otro confianza ..Las personas con mayores y más diversas redes tienen una ventaja como profesionales de la educación y tambén para hacer frente a los cambios..
La estructura social no es un sustantivo sino un verbo, en el Open Social learning. La estructura educativa no es independiente de la sociedad que sustenta, si no que a la vez genera y regenera. :
Rompe la dicotomía micro y macro: propone seguir y examinar a los actores y productos de la tecnociencia en el momento mismo de sus acciones.
Rompe la dicotomía dimensión social-dimensión cognitiva: la sociedad es producto de un entramado de relaciones heterogéneas.
 Los elementos sociales en el pensamiento social no son dimensiones causales, son otro producto de las interacciones entre los actores. Son un problema, no una solución.
Complejiza excesivamente el fenómeno, lo cual dificulta su estudio, …pero lo hace abierto, flexible y sobretodo, inclusivo..
‎…menos academicista pero más real a las necesidades de los aprendices..
La #tecnociencia produce objetos híbridos que pertenecen al campo de lo social y de lo natural,por eso el aprendizaje con TIC es natural, no puede ser de otra manera, la formalidad, lo preconcebido y uniformizador..desvirtua el aprendizaje y lo hace segregacionista y antinatural a la persona.
El concepto red tiene muchos sesgos de jerarquías, por ello se propone el concepto “rizoma” a través de la tradición de Deleuze y Guattari (1988) (principios de conexión y heterogeneidad, principio de multiplicidad,…) un concepto que tiene mucho más que ver con el gran número de actores-humanos o tecnologías, no importa- descentralizados que pueden llegar a influir en la producción de conocimiento y de aprendizaje .. 
La concepción rizomática del aprendizaje social abierto entra de lleno en el mundo no jerarquizado de las FOLCSONOMÍAS y deja de ladao el mundo jerarquizado de las taxonomías, lo que hacemos con los Mapas conceptuales, vaya….

Si logramos seducir a los demás y de convertir lo que tenemos en algo que responda a las necesidades del otro, lo lograremos…ese es un mensaje perfecto para la sociedad y la educación de hoy.
Parece que la educación va a ser en las redes y no será sobre el conocimiento. Será acerca de ser exitoso en las relaciones, , cómo construir la confianza, la manera de cultivar la prudencia y la capacidad de recuperación
En la Educación tenemos que producir un ser humano competente en el cambio de las realidades y en hacer frente a los cambios…., lo demás vendrá por añadidura..
las obligaciones que las personas crean para sí mismas son más fuertes y psicológicamente más vinculantes que las instrucciones dadas por otra persona, por tanto siempre podemos superarnos..

.

  Nosotros emplemaos métodos cualitativos para generar una imagen global de la situación de aprendizaje, mientras que LA son
en su mayoría sobre la base de los métodos cuantitativos. Por otra parte, los interesados ​​en los proyectos de investigación de acción
la realizan solo y principalmente profesores y estudiantes, mientras que LA podrían abordar otras partes interesadas, como el sistema
diseñadores o personal de la institución….
Otra cuestión crucial en la investigación es que se intenta  , identificar a los estudiantes “desconectados” y evaluar las visualizaciones con respecto a sus capacidades en materia de información, su progreso y la comparación con sus pares, mientras que en la Educación Disruptiva (learning is the work) solo lo hacemos con la personalización de cada aprendiz, empresario, profesional, trabajador…en diferentes ambientes de learning is the work y si nos lo piden de manera formal, en diferentes ecosistemas y escenarios de aprendizaje, tanto presenciales (físicos) como virtuales, eso si, siempre de manera abierta. (Santos 2012)
 
Si observamos en el uso de los estudiantes de recursos de aprendizaje y ejercicios de autoevaluación y su posible impacto en las calificaciones finales, pueden ser una fuente importante.
En el contexto de aprendizaje social / abiert (personalized learning an Social learning), podemos explorar  las capacidades de utilidad y motivvación…En particular, la solicitud se relaciona con el efecto de “usuarios expertos” presencia en la conciencia de los participantes, su propia contribución y la participación en un sistema de reputación en línea (elearning) con solo lo que llamaremos retroalimentación positiva.
El dominio de análisis, datos, procesos y objetivos en LA y EDM son bastante similares.
 Se centran en el ámbito educativo, trabajar con datos procedentes de entornos educativos, y convertir estos datos en informacion relevante con el objetivo de mejorar el proceos de aprendizaje.
Sin embargo, las técnicas utilizadas para LA pueden ser bastante diferentes de los utilizados en EDM. Con EDM
básicamente nos centraremos  en la aplicación de técnicas de minería de datos típico (es decir, el agrupamiento, clasificación,
y la asociación minera regla) para apoyar a los profesores y estudiantes en el análisis del proceso de aprendizaje.
Además de las técnicas de minería de datos, LA incluye además otros métodos, tales como estadística y herramientas de visualización o anális en la Redes Sociales y las podremos poner en práctica para el estudio de su eficacia real, unos para establecer  Buenas Prácticas en las aulas y los otros para buscar mejoras donde los aprendices decidan realizarlo.

Los miembros de nuestra sociedad moderna se enfrentan a situaciones políticas, sociales, económicas, tecnológicas y ambientales rápidos y cambiantes. En consecuencia, se espera que los miembros de esta sociedad sepan mantener el ritmo de estas situaciones variables, y sean capaces de adaptar sus habilidades y experiencia.

Todo ello conlleva a una permeabilidad de un ecosistema de aprendizaje digital para la exportación y / o importación de la información y el conocimiento depende de la naturaleza de la “arquitectura” de los componentes del sistema (por ejemplo, la conectividad, la agrupación), las características de los protagonistas y su diversidad y distribución , y las interacciones entre ellos …

También nos encontramos con el circuito de retroalimentación ddesde dentro hasta a fuera y al revés, con lo que esta interacción continuada es vital para cualquier ec0sistema de aprendizaje digital.

Si queremos conocer bien lo que es UN ECOSISTEMAS DIGITAL, lo habremos de comparar con algo, sino es imposible, ya que este término realmente no existe si nos referimos a las Tecnologías de la Información y la comunicación…

..esto nos hace ir a una analogía con un Ecosistema biológico, por tanto las “criaturas que viven y conviven en él, en el mundo digital serán… las complejas interacciones entre los estudiantes y interfaz, estudiante y profesor, alumno y contenido, y el estudiante y el estudiante (pares), que conforman el aprendizaje .

El análisis de estas interacciones es crucial para la comprensión en profundidad de aprendizaje en línea de los entornos de aprendizaje, …

Comunidades que se interelacionan auqnue sea desde posicionamientos que conforman NICHOS diferentes, pero que cuando se pretende dar un VALOR o un APRENDIZAJE, necesitan estar en constante relación…

Realmente las personas eficientes saben que el esfuerzo concentrado con pocas distracciones conduce a un mejor producto de trabajo en los tiempos más rápidos. De lo contrario, el trabajo no puede ser a la par, lo que significa perder aún más tiempo y energía a volver a arreglar los errores, eso si que es un cvambio de CONCEPTO Y DE PARADIGMA, pero esto aún sucede muy poco y en la educación formal practicamente nunca.

La comunidad en general entiende que, en muchos casos, los algoritmos tradicionales apenas están una nueva etiqueta con un gran despliegue publicitario y el atractivo de moda….por lo que el APRENDIZAJE con el concepto que teníamos ahora lo deshechan..

Este concepto relativamente nuevo aprendizaje y ha surgido debido al abrazo cada vez mayor de la tecnología en todas las facetas de nuestra vida. Sin llegar a ser difícil hacer un seguimiento de todo lo que surge como consecuencia de este exceso de digitalización de la educación, pero al menos deberíamos tener una idea y una imagen clara de los más populares. Tecnología Educativa y Aprendizaje Móvil tiene previsto introducir a algunos de estos conceptos de aprendizaje y guiarlo hacia una mejor comprensión de lo que significan y la esperanza de que usted se beneficiará de ellos para informar a su práctica docente. Ya conocemos el Blended Learning , el Plipped aprendizaje, yahora estamos introduciendo al aprendizaje autodirigido.

¿Qué es el aprendizaje autodirigido todo esto?

“En su sentido más amplio,” aprendizaje autodirigido “describe un proceso por el cual los individuos toman la iniciativa, con o sin la ayuda de los demás, en el diagnóstico de sus necesidades de aprendizaje, la formulación de objetivos de aprendizaje, identificar los recursos humanos y materiales para el aprendizaje, la selección y aplicar las estrategias de aprendizaje, y la evaluación de los resultados del aprendizaje. “(Knowles, 1975, p. 18)
Elementos del aprendizaje autodirigido
El Aprendizaje autodirigido se basa en los siguientes elementos:
  • Estudiantes toman la iniciativa de buscar una experiencia de aprendizaje 
  • Toman la responsabilidad y la rendición de cuentas para completar su aprendizaje (evaluación y formación)
  • Tienen una legibilidad de aprender
  • Ellos fijan sus propias metas de aprendizaje
  • Se involucran en el aprendizaje
  • Ellos evalúan su aprendizaje
Una de la idea errónea acerca de la auto-aprendizaje es que los estudiantes aprenden en completo aislamiento de los demás, cuando en realidad la idea central detrás del aprendizaje se debe a factores motivacionales intrínsecos derivados de los alumnos propio deseo de aprender y llevar a su / su experiencia de aprendizaje comenzando con el reconocimiento de la necesidad de aprender.
             .Seguramente entiende que es mejor convivir con términos que vienen en y fuera de la moda sobre una base regular.
             .De lo que hablo es de , funciones como la minería de datos tradicional y estadísticos que están siendo dobladas debajo del paraguas de aprendizaje automático.
  •  .En algunos casos, los algoritmos están ocultos detrás de una interfaz de usuario para que los usuarios pueden no saber lo que está sucediendo bajo el capó.  Los usuarios pueden creer que se está utilizando una nueva capacidad o algoritmo que se acerca más a la inteligencia artificial. Sin embargo, serían los mismos usuarios estar emocionado si supieran que están comprando una versión muy temprana e inmadura de otra herramienta para crear un árbol de decisión?
  • Sería como si utilizaramos una ETIQUETA, un hashtag y a continuación todo el aprendizaje estuviese como montado en nata, es decir, que estuviese ya todo cocinado precviamente y los algoritmos solo pudiesen conducirnos por el camino trazado y hasta el destino que habiamos predecido…
    Pensando en una partida de ROL yomo he jugado el juego, me di cuenta de que una estrategia de la elección de un espacio con una gran cantidad de opciones en los próximos dos o tres movimientos, así como el próximo movimiento, por lo general le ganaría a moverse al espacio donde existía la mayor cantidad de opciones para sólo el siguiente movimiento….con lo cual lo que prima es la diversidad y el trabajo creativo, no puede ser de otra manera, pero con un componente cientifico DE LÓGICA MATEMÁTICA y por tanto calculable con un algoritmo, pero abierto, por supuesto….
    El programa identifica todos los espacios posibles que podría trasladarse, o lo que es lo mismo, los diferentes tipos de aprendizajes según los contextos, objetos de aprendizaje, escenatios…
    Realmente esto si que es meta-aprendizaje, el aprendizaje real de esta nueva sociedad, un mar de opciones, caóticas muchas veces, que hemos de resolver para llegar a identificar las ideas que tenemos y que en un principio llegaron a nuestro cerebro como informaciones-imputs y que queremos desarrollar, para algo concreto, no necesariamente material, si eso es APRENDIZAJE, O EFICENCIA O… pues bienvenido sea…
    .Mientras que mucha gente cree que detras de estos planteamientos existe mucha “inteligencia” bien sea por el posicionamiento teórico o por la realización práctica-hibrida entre personas y algoritmos-, la realidad es que no es asi.
     . El punto es que con algunas reglas simples, recurrentes podemos tener la oportunidad de crear estrategias diferentes y creativas que con la ayuda de la inteligencia artificial, nos llevara a aprendizajes, eficiencia, trabajo..de un alto nivel, nada a ver con las del siglo anterior y aquí, si se ven las diferencias, efectivamente. .
    .Sin embargo, en estos momentos no ESTAMOS PENSANDO EN APRENDER Estoy comenzando a preguntarme si alguno lo suficientemente complejo y me refiero a algun algoritmo basado en normas es indistinguible para la inteligencia artificial o verdadero aprendizaje automático adaptativo, o el aprendizaje de hoy y del mañana
    xprecision,P20learning.png.pagespeed.ic.PBjbmfcNiZ
 
Nos centramos en los sistemas educativos inteligentes adaptativas, tales como Sistemas Tutoriales Inteligentes (ITS) y adaptativos
Sistemas Hipermedia (AHS). Una idea común detrás de los sistemas educativos de adaptación es que la información sobre cada aprendiz (personas) y su contexto actual, puede hacernos variar las propuestas a tener en cuenta.
Para poder establecer nuestras investigaciones en la actualidad deberemos remitirnos al apartado móvil y ubícuo.

El aprendizaje de la ciencia, la psicología, la pedagogía, las ciencias de la computación, internet, el mundo de la empresa y del trabajo, la conciliacion familiar, el ocio….se cruzan y mediante la desconstrucción de todos, pero no en su literalidad, sino en en su capacidad de transversalidad, podremos estar en medio de todos ellos.

Con la proliferación heterogénea de dispositivos móviles, la entrega de materiales de aprendizaje en este tipo de poscionamientos se convierte en objetos de más y más valor. El Aprendizaje personalizado y la adaptación de contenidos, por lo tanto, se vuelve cada vez más importante para satisfacer las diversas necesidades impuestas por los dispositivos, los usuarios, los contextos de uso, y la infraestructura.

Registros del servidor históricos ofrecen una gran cantidad de información sobre las capacidades del hardware, las preferencias de los alumnos, y las condiciones de la red, que puede ser utilizada para responder a una nueva solicitud de usuario con el contenido de aprendizaje personalizado creado a partir de una petición similar anterior. Proponemos un aprendizaje personalizado  con un Mecanismo de Adaptación de Contenidos , por ejemplo… que aplique  técnicas de minería de datos, incluyendo clustering y enfoques de los árboles de decisión, para gestionar eficientemente un gran número de solicitudes de los aprendices “. El método propuesto de manera inteligente y directo es  entregar el contenido correcto para un aprendizaje personalizado con mayor fidelidad  por medio de la decisión de la adaptación propuesta y procesos de síntesis . Además, los resultados experimentales indican que es eficaz y se espera que resultar beneficiosa para cualquiera que quiera aportar valor a la sociedad.

Después del post “Paradigmas educativos ….Hemos realizado este trabajo con el objetivo de conocer sobre los paradigmas de la
investigación educativa como son el positivismo, interpretativo, sociocrítico sus métodos y
técnicas, conceptos y principios que son herramientas que nos ayudará para el presente y
futuro como docentes y estudiantes. La investigación en tecnología educativa está
forzosamente relacionada con lo que se desarrolla en todas aquellas ciencias y disciplinas en
las que se fundamenta, por ello su evolución ha seguido los mismos caminos que la
investigación didáctica en general y también ha contemplado la polémica entre los paradigmas
positivista, interpretativo, socio-crítico….

…CONCLUSION
Desde la perspectiva cualitativa la investigación educativa pretende la interpretación de los
fenómenos, admitiendo desde su planteamiento fenomenológico que admite diversas
interpretaciones. Muchas veces hay una interrelación entre el investigador y los objetos de
investigación, pero las observaciones y mediciones que se realiza se consideran válidas
mientras constituyan representaciones auténticas de alguna realidad. Tener paradigmas y
pensar que cada uno corresponda a un concepción de construcción de conocimientos, una
limitante impuesta por una realidad extrapolada desde un conocimiento acumulado que no llega
a una profundidad que subraye en lo visible la realidad, cada uno de los paradigmas guarda su
sentido pero a la vez, uno tiene razón de ser función del otro. Términos de paradigmas se
puede encontrar hoy en cientos textos científicos, en artículos de los más variados contextos,
por lo general su empleo viene del sentido que se ha generalizado a partir de la obra de Kuhn.
“La estructura de las revoluciones científicas”. No existe aún una primera teoría unificadora de
la educación que nos permita analizar y solucionar la globabilidad y la complejidad de los
problemas de la educación. Peor los problemas existen y es posible asumir una de dos
posiciones; La teórica y la práctica.
Esta trilogía paradigmática, conformada por el paradigma cientificista, el paradigma hermético y
el paradigma crítico han originado una ruptura epistemológica con un subsecuente proliferación
de diferentes estudios, enfoques, teorías y prácticas dentro de la esfera de la investigación
educativa, tratando de legitimar desde cada uno de estos paradigmas una propuesta
emergente que sirva de fundamento para orientar la acción educativa y el proceso de
enseñanza-Aprendizaje….

Si en el primer post hablamos de paradigmas, ahora lo haremos de “investigación“…Mientras que la etnografía general se basa en datos cualitativos, no quiere decir que los enfoques cuantitativos no deben ser empleados en el proceso de investigación. La combinación de los dos cables a un “enfoque de métodos mixtos”, que puede adoptar diversas formas: la recolección y análisis de datos pueden ser separados o dirigirse juntos, y cada uno de ellos se pueden utilizar en el servicio de la otra. Por supuesto, esto no es nuevo en los círculos académicos y la etnografía corporativa, pero parece que hay un renovado interés últimamente en este tema, ya que sin duda alguna los aspectos INFORMALES, están superando los formales.

Uno de los impulsores de este renovado interés es la enorme cantidad de información generada por las personas, las cosas, el espacio y sus interacciones – lo que algunos han llamado ” Big Data “: Los grandes conjuntos de datos creados por la actividad de las personas en los dispositivos digitales de hecho ha dado lugar a un aumento de las “huellas” de aplicaciones para teléfonos inteligentes, programas de ordenador y sensores ambientales (INTELIGENCIA ARTIFICIAL) Dicha información se espera actualmente para transformar la forma en que estudiamos el comportamiento y la cultura humana, con, como de costumbre, las esperanzas utópicas, distópicas y miedos …, llegando a entender estos datos como METADATOS….

Encontramos términos que admiten conceptos con los que muchos estaríamos de acuerdo :  Etno-minería, como su nombre indica, combina técnicas de la etnografía y la minería de datos. En concreto, la integración de técnicas de minería de datos etnográficos y de etno-minera incluye una mezcla de sus puntos de vista (en lo interpretaciones son válidas e interesantes, y cómo deben ser caracterizados) y sus procesos (lo que selecciones y transformaciones se aplican a los datos para encontrar y validar las interpretaciones).

Por medio de estas investigaciones, esta integración tiene por objeto poner de relieve nuevas formas de entender y potencialmente inspirar el diseño de la investigación la interacción persona-ordenador… 

La misma librería JMSL incluye tecnología de redes neuronales que complementa las ya existentes funciones de minería de datos, modelado y predicción, disponibles en toda la familia de productos IMSL. Las clases para la predicción basada en redes neuronales ofrecen un extraordinario potencial , gracias a su capacidad de crear modelos predictivos a partir de datos históricos y de “aprender” para optimizar el modelo a medida que se obtiene más información, lo podríamos llamar “RETROALIMENTACIÓN CONTINUADA Y MULTICANAL”

neuralnet

Una de las principales características de este conjunto de clases de redes neuronales es su capacidad para imitar los procesos humanos de resolución de problemas, mediante la aplicación de los conocimientos adquiridos de datos históricos a nuevos problemas, lo que permite afinar la precisión de las predicciones con el tiempo. Gracias a ello, es posible extraer información, como datos históricos sobre costes, y aplicarlos a la red neuronal para predecir costes futuros con un elevado grado de precisión.

Dicho esto, el enfoque de métodos mixtos, ya se trate de grandes conjuntos de datos o no, no es tan sencillo. Hay problemas potenciales vale la pena explorar. Los temas más importantes reside en el hecho de que los métodos cualitativos y cuantitativos no necesariamente se mezclan fácilmente en el nivel epistemológico: ¿cómo supuestos positivistas incorporados en la mezcla de la investigación cuantitativo con puntos de vista más interpretativos? Otro problema consiste también en el proceso de triangulación entre los datos: en caso de que sólo estar al servicio de uno al otro? ¿O es posible recolectar y analizar los dos tipos de datos de una forma más integradora? Entonces, ¿qué significa todo esto en un sentido práctico?

Tenemos diferentes autores que hablan sobre ello:

Rebekah Rousi (@ RebekahRousi) describirá cómo se combinan los resultados del cuestionario con las observaciones sobre el terreno para investigar cómo las personas experimentan sus interacciones con los diseños de ascensores.
Fabien Girardin (@ fabiengirardin) mostrará cómo utilizar los datos del sensor para producir observaciones de campo en un estudio de Le Louvre en París.
Rachel Shadoan ( @ RachelShadoan ) y Alicia Dudek ( @ aliciadudek ) describirán los resultados de sus investigaciones en Juegos de plantas, un juego de rol online.
Alex Leavitt ( @ AlexLeavitt ) discutirá su investigación sobre Tumbler con una perspectiva etnográfica computacional.
Tricia Wang ( @ triciawang ) va a compartir sus pensamientos acerca de lo opuesto a los grandes datos, en lo que ella llama “datos” de espesor.
David Ayman Sama ( @ ayman ) de Yahoo! Research describirá su perspectiva personal sobre el tema.

…obviamente será necesario seguir este tema y tener en cuenta nos solo los procesos intrínsecos de investigación, que evidentemente van a pasar de ser “formales” a tomar otros caminos más informales y adaptados a las personas, organizaciones, contextos, disposiciones…., si no también las diferentes tecnologías que pueden objetivar y subjetivar, los elementos, planteamientos, hipótesis,…del momento (tiempo) y del lugar (espacio)….

Fuentes:

http://ethnographymatters.net/2012/05/28/small-data-people-in-a-big-data-world/ Etnography Matters

Farnós, Juan Domingo : http://www.academia.edu/3224671/Paradigmas_educativos Paradigmas Educativos

juandon

Crea un blog o un sitio web gratuitos con WordPress.com.

Subir ↑

A %d blogueros les gusta esto: