juandon
a0b606d64fd75a0e13e60fef5b1289dd3423f762_2880x1620
El aprendizaje automático es el arte de hacer que una computadora haga cosas útiles sin codificarla explícitamente. Más específicamente, el aprendizaje automático es la adquisición de nuevos conocimientos a través de un sistema artificial.
 
Al igual que un ser humano, la computadora de forma independiente genera conocimiento a partir de la experiencia y puede encontrar de forma independiente soluciones a problemas nuevos y desconocidos. Para hacer esto, un programa de computadora analiza ejemplos y usa algoritmos de autoaprendizaje
 
El objetivo de Machine Learning es vincular de manera inteligente los datos, reconocer relaciones, sacar conclusiones y hacer predicciones.
 
¿Cómo funciona el aprendizaje automático en principio?
En principio, similar al aprendizaje humano. De forma similar a como un niño aprende que ciertos objetos se pueden ver en las imágenes, una computadora también puede “aprender” a identificar objetos o distinguir personas. Para este propósito, el software de aprendizaje primero se alimenta con datos y se entrena. Por ejemplo, los programadores le dicen al sistema que un objeto es “un perro” y otro “no un perro”. A medida que avanza, el software de aprendizaje recibe constantemente comentarios del programador, que utiliza el algoritmo para ajustar y optimizar el modelo: con cada nuevo registro, el modelo mejora y finalmente puede distinguir claramente a los perros de los que no lo son.
 
El aprendizaje automático ayuda a las personas a trabajar de manera más eficiente y creativa y siempre de manera personalizada/socializadora. Por ejemplo, pueden usar el aprendizaje automático para organizar y editar sus imágenes más rápido. Con el aprendizaje automático, también pueden dejar el trabajo aburrido o elaborado en la computadora. Los documentos en papel, como las facturas, pueden escanear, almacenar y almacenar software de aprendizaje de forma independiente.
 
 
La diversidad de pensamiento crea “interrupción constructiva” (DISRUPCION-EDUCACION DISRUPTIVA -learnig is the work) que pueden influir en las nuevas formas de pensar, innovación y nuevas iniciativas, lo que nos lleva a crear un nuevo paradigma.
Cada vez más vamos a situaciones donde “las organizaciones que definen a las personas, las personas definen a las instituciones”.
Estamos próximos a la posibilidad de utilizar agentes que comprenden contextos, que sean capaces de hacer “coherente” el sentido de los flujos de datos variados para buscar información, descubrir y proporcionar el contenido necesario para cada uno..
Una cosa que me parece fascinante la idea de que se podrá crear un “perfil de aprendizaje”, una identidad que es esencialmente un paquete digital de nuestras preferencias de aprendizaje y los contenidos del aprendizaje del pasado, que se podrá acceder por las máquina (PERSONALIZED LEARNING + MACHINE LEARNING. by Juan Domingo Farnos)
Esto permitirá que la “máquina” en realidad adapte sus interfaces de usuario, el contenido de aprendizaje y la experiencia en sí misma, y presentar información de una manera que se adapte a las preferencias de los humanos….eso sin duda nos lleva a la VERDADERA SOCIEDAD INTELIGENTE.
Todo ello ocasionará un Aprendizaje integrado – aprendizaje en red que estará integrado en cada dispositivo, cada herramienta, cada recurso físico de LAS PERSONAS, no hay necesidad de una formación específica, la información más reciente estará disponible sólo en el tiempo, de fuentes auténticas COMPUTACIÓN UBÍCUA E I-BICUA, a juzgar por el valioso análisis de la red, siempre con el contexto y que las personas prestemos nuestra ayuda.
 
La Personalización puede tomar muchas formas, ya que se adapta el contenido, la práctica, la retroalimentación, o de dirección para que coincida con el progreso y el rendimiento individual. Por ejemplo, dos personas que utilizan la misma instrucción al mismo tiempo pueden ver dos conjuntos completamente diferentes de los objetos de aprendizaje. El mayor beneficio de la personalización de aprendizaje es la capacidad para hacer más fácil la instrucción compleja, presentando sólo lo concreto que será útil o aceptado por cada uno.
fig-1-evolutionary-history-of-ubiquitous-computing-technology
Una buena retroalimentación hace pensar:….
              a-Si el voto es uno de los factores más importantes para mejorar el trabajo del aprendiz y los resultados….a…
              b- ¿qué esperamos? que todos en los centros puedan intervenir por igual…
              c-¿no sería mas justo?
Si el modelado del proceso de retroalimentación permite a los jóvenes desarrollar su propia autorregulación de mejorar el trabajo….
¿Cómo no un centro cualquiera deja de implementar toda una política de la regeneración de la universidad, escuela que tenga en cuenta los muchos matices de cada tema?
La retroalimentación es importante. Nos retroalimentamos con los aprendices a a diario, es más, nosotros también lo somos, pero si podemos hacerlo ayudandonos de la Machine learning (La tecnología Machine Learning está abriendo nuevas oportunidades para las aplicaciones de software en temas de retroalimentación, al permitir a los ordenadores aprender de grandes y de pequeñas cantidades de información sin necesidad de ser programados explícitamente, aprendiendo de los errores producidos y segun los datos personalizados, readaptarlos en otras direcciones, lo cual nos permite optar por otras opciones de aprendizaje…)
En este sentido, los sistemas Machine Learning representan un gran avance en el desarrollo de la inteligencia artificial, al imitar la forma en que aprende el cerebro humano -mediante la asignación de significado a la información y darnos más posibilidades de opción segun nuestros personalismos.
El Machine learning identificará y categorizará las entradas repetitivas y utilizar la retroalimentación para fortalecer y mejorar su rendimiento. Es un proceso similar a cómo un niño aprende los nombres y la identidad de los animales, haciendo coincidir las palabras con las imágenes; el ordenador, poco a poco, aprende a procesar la información correctamente.
La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning de Roger Schank ). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.
Desde los primeros albores de la temprana inteligencia artificial, los algoritmos han evolucionado con el objetivo de analizar y obtener mejores resultados: árboles de decisión, programación lógica inductiva (ILP), clustering para almacenar y leer grandes volúmenes de datos, redes Bayesianas y un numeroso abanico de técnicas que los programadores de data science pueden aprovechar” XAKATA
 
El sueño de entregar el aprendizaje personalizado utilizando objetos de aprendizaje que se ajusta al tiempo real, en cualquier lugar, en cualquier momento, justo suficientes necesidades del estudiante está a punto de convertirse en una realidad. Hoy en día, junto con muchos desarrollos importantes en la psicología de la instrucción, estándares abiertos, lenguajes de marcas estructuradas para la representación de datos interoperables, y el cambio de control de flujo de instrucción desde el cliente al servidor, una base totalmente nueva está haciendo realmente personalizado de aprendizaje en línea .
“Poco a poco las características subversivas de la computadora fueron erosionados distancia: En lugar de cortar a través y así desafiar la idea misma de fronteras temáticas, el equipo ahora se define un nuevo tema; en lugar de cambiar el énfasis del currículo impersonal a la exploración en vivo emocionados por los estudiantes, el ordenador se utiliza ahora para reforzar los caminos de la escuela. Lo que había comenzado como un instrumento subversivo de cambio fue neutralizado por el sistema y se convierte en un instrumento de consolidación”..… Audrey Watters
 
Lo que hace que la programación ed-tecnología “adaptable” es que la IA evalúa la respuesta de un estudiante (por lo general a una pregunta de opción múltiple), luego sigue con la “segunda mejor” cuestión, cuyo objetivo es el nivel “adecuado” de dificultad. Esto no tiene por qué requerir un algoritmo especialmente complicado, y la idea en realidad basada en “la teoría de respuesta al ítem”, que se remonta a la década de 1950 y el ascenso de la psicometría. A pesar de las décadas siguientes, sinceramente, estos sistemas no se han vuelto terriblemente sofisticados, en gran parte debido a que tienden a basarse en pruebas de opción múltiple.
 
Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde la evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.
 
https://juandomingofarnos.wordpress.com/…/los…/ Los algoritmos salen de las Universidades de Juan Domingo Farnós Miró
 
Cute Robot
Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilancia para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….
 
Si partimos de la idea de que la REALIDAD es múltiple, podemos entender por qué aprender en la diversidad no tiene porque llevarnos a un punto común-….esta premisa es fundamental para entender el pensamiento crítico en los aprendizajes y sin la cuál sería imposible llevar a cabo aprendizajes basados en la diversidad-INCLUSIVIDAD (EXCELENCIA)…
 
…todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA), por medio de una mezcla de inteligencia artificial y algorítmica.
 
El beneficio más evidente de estas innovaciones es la creación de una ecología de aprendizaje que comparte recursos de grandes depósitos de contenidos en los objetos de aprendizaje que se comparten de forma individual, ampliamente, y de forma más económica.
Por tanto debemos elegir entre dos posturas que condicionarán el futuro de la Sociedad, ya que la Educación es una de las principales piedras angulares en que gravita cualquier hábitat.
Una, sería seguir buscando mejoras, modificaciones, regeneraciones…a los Sistemas Educativos de amplio aspectro que venimos realizando las últimas generaciones-que sería seguir con una Educación eminentemente formal, estandarizada,
homogeneizadora…basada en Curriculums prescriptivos e igualadores… y enfocada a dar resultados que generen titulaciones previstas para que luego deriven en la sociedad en los trabajos clásicos de siempre…..
Ahora la Sociedad debe decidir como quiere que sea la Educación, cómo quieren que la innovación que se vaya produciendo, se desarrolle, …si es que realmente desean que esté, en cierta manera enmarcada y aceptada por todos,… una Educación natural, por tanto eminentemente no formal, informal, que pueda o no llegar a la formal, pero por medio de mecanismos no dados, es decir, de ir siempre hacia resutados finalistas, consabidos, previstos…sino de planteamientos creativos, constructivos y sobretodo priorizando la conectividad entre personas y/u organizaciones y estableciendo mecanismos generadores de procedimientos abiertos, flexibles y autoregenerables, donde la retroalimentación producto del ENSAYO-ERROR, sea la base del funcionamiento normal de la sociedad y eso se consigue con la ayuda del Machine learning.
Un artículo de Brighton analiza el rol de los nuevos medios digitales, los“UBIMEDIA” que por sus características –multifacéticas, convergentes,colaborativas y cooperativas, móviles- tienen el potencial de empoderar a las personas y crear una mayor cultura participativa.En este contexto las instituciones que tradicionalmente tenían la potestad de establecer aquello que está bien y lo que no lo está, hoy se ven amenazadas por nuevas reglas del juego. Estos retos nos llevan a pensar en nuevos perfiles de profesionales.
Hacen falta perfiles híbridos digitales-analógicos que sean capaces de traducir conocimiento de una comunidad a otra y que puedan generar valor al momento de conectar conocimientos. Necesitamos de habilidades multiplicadas y desarrollo de actitudes creativas, las cuáles se presentan como elementos claves. Es necesario a pensar en un aprendizaje mejorado, que no se limite a una disciplina o certificación, sino que sea permanente, distribuido y escalable, cuya trazabilidad esté en manos de la mayor parte de la población, cada uno con sus características…
Poder personalizar el proceso de aprendizaje a cada estudiante es vital para facilitar su progreso y conseguir que utilice todo su potencial. Es necesario adaptar la enseñanza a las necesidades de cada alumno para lograr atender sus dificultades y aprender a potenciar sus puntos más fuertes. Aquí interviene la trazabilidad educativa, un elemento importantísimo en este proceso.
¿Cómo funciona la trazabilidad educativa?
Utilizar herramientas digitales orientadas a este objetivo nos permite acceder a una gran cantidad de datos que nos aportarán la información necesaria para personalizar la educación a cada alumno. Aunque varían según la plataforma, generalmente podemos agruparlas en dos categorías:
                             a-Seguimiento de uso: Se refiere a los datos relacionados con las conexiones a la plataforma y a cada recurso. Cuántas veces la visitan, cuánto tiempo dedican a cada recurso, cuántas veces acceden a ellos…
                             b-Seguimiento de actividades: Suelen incluirse dos tipos de actividades, las autocorrectivas y las entregables. Las primeras, de respuesta cerrada (tipo test), tienen la ventaja de que son corregidas de forma automática por la aplicación, lo que ahorra un tiempo considerable al docente.
                             c-Se podrá acceder a todos los datos relativos al tiempo dedicado, si han necesitado salir de la página para buscar más información, los intentos realizados, etc. Además, también puede medirse la participación en foros y debates.
Es también habitual que las herramientas nos permitan elaborar un seguimiento del progreso de los alumnos. Para ello, generan automáticamente informes a partir de las diferentes actividades y el uso de la plataforma, pudiendo referirse al conjunto de la clase o a estudiantes individuales.
 
 
images
Los objetivos de estos proceso pretenden hacer frente a las necesidades actuales y las oportunidades de aprendizaje, mediante esta analítica recogiendo los enfoques multidisciplinares pero complementarios de diferentes campos, tales como Ciencias de la Computación, Ciencias de datos, Matemáticas, Educación, Sociología…, eso si, deben ser siempre personalizados y con la responsabilidad de los propios aprendices.
Necesitamos por tanto:
               1–Análizar el aprendizaje basado en competencias, lo que nos llevará…
               2–Aprender y por tanto a realizar la propia evaluación (recordemos que cada aprendizaje lleva impreso consigo la evaluación, ya no como una medición, si no como parte del mismo) con los procesos de aprendizaje de los demás mediante el análisis de ruta de aprendizaje personal y social. Al mismo tiempo, el mecanismo de aprendizaje tecno-social personalizado nos permite que el aprendiz aprenda de acuerdo a su situación y objetivos.
               3–Establecer una ruta de aprendizaje individual lo podemos modelar para registrar su proceso de aprendizaje. Por tanto, el espacio de aprendizaje personal (PLE), sera siempre un espacio no lineal…, es en esta situación donde el pensamiento crítico actúa de manera determinante, para manifestarse capaz de deducir las consecuencias de lo que cada uno sabe, y sabe cómo hacer uso de la información para resolver problemas, y buscar fuentes de información pertinentes para aprender más…
               4-Realizar un análisis de aprendizaje para la evaluación de las competencias genéricas y específicas:
          a-La integración de la analítica de investigación y aprendizajes educativos.
          b-Analíticas de aprendizaje y el aprendizaje autorregulado.
          c-Intervenciones y análisis de los diferentes aprendizajes, estudio de casos…
          d-Implementaciones de la analítica de aprendizaje.
          e-Analíticas de aprendizaje y efectos a largo plazo (estudios sobre la analítica de aprendizaje).
          f-Los avances teóricos en la analítica de aprendizaje.
          g-Replicación y validación cruzada de las investigaciones existentes.
          h-Aspectos éticos de la analítica de aprendizaje.
          i-Analíticas de aprendizaje y formulación de políticas (policy makers)
          j–Interoperabilidad para la analítica de aprendizaje.
Otro beneficio de la personalización es que cada vez que se personaliza, a aprender y almacenar un poco más sobre el conjunto único de un alumno, se aportan posiciones diferenciadas al aprendizaje social.
Esto no solo permite llegar a un mejor AUTOAPRENDIZAJE, si no también una manera más de “emprendimiento” y “apropiación” de la red, como “espacio” claramente de aprendizaje personalizado y socializador.
Esta “vinculación” que se establece, es propia incluso del funcionamiento cerebral, como muy bien dice George Siemens y diría mi amigo argentina Alicia Banuelos (una maravillosa Física)…”la sinapsis neuroal provoca que las neuronas se vinculen, se relacionen unas con otras”.
 
 
“Sin entrar en detalles complejos sobre los diferentes paradigmas de Inteligencia Artificial y su evolución podemos dividir dos grandes grupos: la IA robusta y la IA aplicada.
 
 
Inteligencia Artificial robusta o Strong AI: trata sobre una inteligencia real en el que las máquinas tienen similar capacidad cognitiva que los humanos, algo que, como los expertos se aventuran a predecir, aún quedan años para alcanzar. Digamos que esta es la Inteligencia de la que soñaban los pioneros del tema con sus vetustas válvulas.
Inteligencia Artificial aplicada Weak AI (Narrow AI o Applied AI): aquí es donde entran el uso que hacemos a través de algoritmos y aprendizaje guiado con el Machine Learning y el Deep Learning.
El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo.
 
El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo. Los programadores deben perfeccionar algoritmos que especifiquen un conjunto de variables para ser lo más precisos posibles en una tarea en concreto. La máquina es entrenada utilizando una gran cantidad de datos dando la oportunidad a los algoritmos a ser perfeccionados.
 
 
La capacidad de manejar relaciones complejas entre la entrada y salida de grandes cantidades de datos es uno de los beneficios clave del aprendizaje automático.
 
Machine Learning es una rama de la Inteligencia Artificial (AI). En el mismo sentido, la lógica, el análisis y estocástica son ramas de las matemáticas; Subdivisiones de Física de Mecánica, Termodinámica y Física Cuántica.
 
La Inteligencia Artificial en sí misma es una subdisciplina de la informática y generalmente se ocupa de la automatización del comportamiento humano inteligente. Además del aprendizaje automático, la Inteligencia Artificial, como lo implica el término alemán, incluye áreas tales como los sistemas basados ​​en el conocimiento (expertos), el reconocimiento de patrones, la robótica, el procesamiento del lenguaje natural y la traducción automática. Sin embargo, Machine Learning actualmente se considera una de las disciplinas de Inteligencia Artificial más importantes y exitosas.
“Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese planteamiento que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”
Hay muchas maneras de personalizar el aprendizaje. Sin embargo, al igual que los términos de estilos y la motivación del aprendizaje, la personalización es otro término mal definido. Para ser más específicos, se describe la personalización aquí con cinco niveles con creciente sofistificación, cada nivel que describe una estrategia de personalización específica. Desde los más simples a las más complejas, las cinco estrategias son:
          (a) nombre reconocido;
          (B) describe a sí mismo;
          (C) segmentados;
         (D) cognitivo-basada; y
          (E) de base integral de la persona.
A lo mejor el “sueño de algunos de una educación autónoma y libre (solo realizable mediado con la Machine learning, AI, internet, TIC), no es tal sueño y es una realidad.
juandon
Anuncios