juandon

231921969_41b3028d92

El machine learning, el aprendizaje automatizado, va a condicionar y mucho el aprendizaje de hoy y más el de mañana, es por eso que os dejo cuatro artículos que he escrito al respecto y que son fruto de las investigaciones que ya conoceis, su deriva lógica que nunca irán de manera aislada si no que están dentro de la EDUCACIÓN ABIERTA, INCLUSIVA, UBÍCUA, en la que siempre nos basamos pero que como es lógico va evolucionando de manera permanente y continuada.

 

Las tendencias actuales en aprendizaje automático, análisis de datos, aprendizaje profundo e inteligencia artificial, sin embargo, complican las cuentas psicológicas centradas en el ser humano sobre el aprendizaje. Las teorías de aprendizaje más influyentes de hoy son las que se aplican a cómo las computadoras “aprenden” de la “experiencia”, cómo los algoritmos están “entrenados” en selecciones de datos y cómo los ingenieros “enseñan” a sus máquinas a “comportarse” a través de “instrucciones” específicas.

 

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA, por medio de una mezcla de inteligencia artificial y algorítmica.

Esto generará automáticamente los ecosistemas de las ideas que serán navegables con todas sus relaciones semánticas. Seremos capaces de comparar diferentes ecosistemas de las ideas de acuerdo a nuestros datos y las diferentes formas de clasificarlos. Seremos capaz de elegir diferentes perspectivas y enfoques…..(personalized learning and Social Learning)

Vamos a ser capaces de analizar y manipular significado, y allí radica la esencia de las ciencias humanas.

Estas operaciones que se harán de manera automatizada y significativa deberá proporcionarnos la suficiente seguridad, transparencia y confiabilidad,… y lo hará si la sociedad quiere que así sea.

 

La transformación es el cambio de una o muchas variables en el estudio.

Se transforman variables, por ejemplo, al remplazar los valores originales por logaritmos (transformación logarítmica). Frecuentemente los datos que son obtenidos no se ajustan a una distribución normal, por lo cual es inapropiado el ejecutar pruebas paramétricas

Muchas variables no se comportan de forma lineal o aritmética, por ejemplo las abundancias siguen un patrón exponencial.

” La pieza central de cualquier forma de “aprendizaje personalizado” es el algoritmo para la adaptación de los aprendizajes a los estudiantes individuales .Es cierto que cuando se programa un algoritmo se puede hacer más incidencia en unos valores más que con otros, éstas decisiones son subjetivas; que contienen juicios de valor sobre las variables dependientes e independientes y su relación entre sí. Las cifras ocultan la subjetividad dentro de estas ecuaciones.
Los ingenieros de software crearán diferentes versiones de “aprendizaje personalizado” e insertarán los juicios de valor en las ecuaciones de regresión complicados con el que han escrito para lecciones en línea. Estas ecuaciones estarán ancladas en los datos de los estudiantes prediciendo (no en su totalidad ya que los ingenieros y educadores hacen tweak- “masaje” -las ecuaciones favorecidas) lo que los estudiantes deben estudiar y absorber, clases individualizadas de software en línea , nosotros cambiamos lo de absorver de manera individualizada, por “aprender de manera personalizada-personalized learning, and social learning”.
Tales lecciones “personalizadas” alteran la función del docente para mejor, de acuerdo a los promotores de la tendencia. En lugar de cubrir el contenido y la enseñanza de habilidades directamente, los docentes pueden tener los estudiantes en línea , por medio de ELEARNING, MLEARNING… liberando así el mismo docente para entrenar, dar atención individual a los estudiantes que se desplazan por delante de sus compañeros de clase y los que luchan.
juandon

Con el personalized learning y el machine learning, proyectamos escenarios de aprendizaje!!!

https://juandomingofarnos.wordpress.com/2017/08/12/con-el-personalized-learning-y-el-machine-learning-proyectamos-escenarios-de-aprendizaje/  (Juan Domingo Farnós Miro)

 

Machine learning: ¿personalized learning automatizado?

https://juandomingofarnos.wordpress.com/2017/08/30/machine-learning-personalized-learning-automatizado/ (Juan Domingo Farnos Miro)

 

Conocimiento y aprendizaje híbrido: el futuro,… machine learning y personas.

https://juandomingofarnos.wordpress.com/2017/12/02/conocimiento-y-aprendizaje-hibrido-el-futuro-machine-learning-y-personas/ (Juan Domingo Farnos Miro)

 

El MACHINE LEARNING vs MOBILE LEARNING: medios para encumbrar el personalized/social learning en el nuevo paradigma…

 

https://juandomingofarnos.wordpress.com/2017/12/03/el-machine-learning-vs-mobile-learning-medios-para-encumbrar-el-personalized-social-learning-en-el-nuevo-paradigma/ (Juan Domingo Farnos Miro)

 

juandon

Anuncios