juandon
istock-139960401_0
Estamos ya convencidos que la web ofrece la tecnología perfecta y el medio ambiente para el aprendizaje individualizado porque para los aprendices puede ser identificativa, el contenido se puede personalizar específicamente, y el progreso del alumno puede ser monitoreado, apoyado y evaluado.
 
Tecnológicamente y técnicamente, los investigadores estamos haciendo progresos hacia la realización del sueño del aprendizaje personalizado con la tecnología de objetos de aprendizaje (para algunos adaptativos, para nosotros, nada más lejos de la realidad, no hay nada de adaptación, si no de personalización, que no es lo mismo) y eso el machine learning puede ayudarnos a conseguirlo.
 
Sin embargo, dos consideraciones importantes están siendo ignoradas o pasadas por alto en el cumplimiento del sueño de personalización con machine learning:
 
Lo “adaptativo” es el ‘ajuste de una o más características del entorno de aprendizaje’. Estas acciones adaptativas tienen lugar en tres áreas distintas:
 
          1-Apariencia/forma: Cómo se muestran al aprendiz las acciones de aprendizaje, como contenido, incorporación de texto, gráficos o videos, etc. La mayoría de las plataformas adaptativas de hoy día lo denominan “consumo de contenido” y esperan que el conocimiento se adquiera simplemente leyendo el contenido.
 
          2-Orden/secuencia: Cómo se ordenan y se bifurcan las acciones de aprendizaje según el progreso del alumno, como las rutas de aprendizaje.
 
          3-Orientación hacia el objetivo/dominio Las acciones del sistema que conducen al aprendiz hacia el éxito (excelencia personalizada)
 
Esto permite que se realicen cambios según los resultados óptimos de aprendizaje, el grado de dificultad y el creciente nivel de conocimientos o aptitudes del alumno.
 
 
El término “aprendizaje personalizado” es una palabra de moda los educadores suelen ser una alternativa a la “talla única” la enseñanza. Por desgracia, el mensaje es confuso. ya que aparecen diferentes definiciones parecidas: la instrucción individualizada, personalizada y diferenciada:
          -La individualización se refiere a la instrucción que se estimula a las necesidades de aprendizaje de los alumnos diferentes. Metas de aprendizaje son los mismos para todos los estudiantes, pero los estudiantes pueden progresar a través del material a diferentes velocidades de acuerdo a sus necesidades de aprendizaje. Por ejemplo, los estudiantes pueden tomar más tiempo para avanzar en un tema determinado, no tome los temas que cubren la información que ya saben, o temas repetidos que necesitan más ayuda sobre.
          -La diferenciación se refiere a la enseñanza que se adapta a las preferencias de aprendizaje de los alumnos diferentes. Metas de aprendizaje son los mismos para todos los estudiantes, pero el método o enfoque de la enseñanza varía en función de las preferencias de cada alumno o lo que la investigación ha encontrado funciona mejor para los estudiantes como ellos.
          -La personalización se refiere a la instrucción que se estimula a las necesidades de aprendizaje, adaptados a las preferencias de aprendizaje, y adaptados a los intereses específicos de los diferentes alumnos. En un entorno que es totalmente personalizado, los objetivos de aprendizaje y contenidos, así como el método y el ritmo de toda puede variar ( la personalización incluye la diferenciación e individualización)
Aprendizaje personalizado no es “Instrucción Personalizada”:
          -Personalización de los medios de aprendizaje …
          -Los estudiantes saben cómo aprenden para que estén preparados para el presente y su futuro como ciudadanos del mundo.
          -Los estudiantes son los compañeros de los alumnos y compañeros de los diseñadores del currículo y el ambiente de aprendizaje.
          -Los estudiantes deben  poseer y manejar su propio aprendizaje.
AUTOMOTIVARSE-01-INED21
Cada estudiante es único y aprende de diferentes maneras. Diferenciación de instrucción significa que el profesor se adapta el plan de estudios existente para satisfacer las diferentes necesidades de cada estudiante en su salón de clases. El profesor se convierte en la persona más trabajadora en el aula. La individualización significa que las empresas de la maestra y el libro de texto de crear varios niveles de currículo para satisfacer las diferentes necesidades de todos los estudiantes. Esto significa que usted paga más a las empresas de libros de texto para preparar el plan de estudios o encontrar múltiples formas de enseñar a un área de contenido que cumpla con los estilos de aprendizaje variados y niveles de lectura en el aula.
La diferenciación y la individualización de la enseñanza es el maestro-céntrico, a nivel de grado, y basada en estándares. Los profesores pueden utilizar estas técnicas para presentar el contenido. Sin embargo, el estudiante necesita para ser los más difíciles de las personas que trabajan en el aula. Los maestros deben enseñar a sus alumnos a pescar y no el pescado para ellos. En un ambiente de aprendizaje personalizado, el profesor no tiene por qué ser el único experto. La ventaja de la tecnología es que los estudiantes puedan utilizar los contenidos y que los expertos con su profesor.
Aprendizaje personalizada significa que los estudiantes impulsan su aprendizaje y el profesor es el guía al lado, el co-diseñador de su aprendizaje, y  un facilitador para asegurarse de que los estudiantes están cumpliendo con sus objetivos de aprendizaje.
La consideración que falta se refiere a una persona en su totalidad la comprensión acerca de las fuentes psicológicas clave que influyen en cómo las personas quieren y tienen la intención de aprender en línea. Las soluciones convencionales, principalmente cognitivas (que se centran en cómo el proceso aprendices, construir y almacenar conocimiento) ofrecen una visión restringida de cómo las personas aprenden y demasiado a menudo conducen a soluciones inestables o ineficaces de aprendizaje en línea. Una persona en su totalidad incluye emociones e intenciones como factores críticos en el proceso de aprendizaje. También falta la integración de los fines de instrucción, los valores y las estrategias en el diseño, desarrollo y presentación de contenidos (objetos).
 
 
La Personalización puede tomar muchas formas, ya que se adapta el contenido, la práctica, la retroalimentación, o de dirección para que coincida con el progreso y el rendimiento individual. Por ejemplo, dos personas que utilizan la misma instrucción al mismo tiempo pueden ver dos conjuntos completamente diferentes de los objetos de aprendizaje. El mayor beneficio de la personalización de aprendizaje es la capacidad para hacer más fácil la instrucción compleja, presentando sólo lo concreto que será útil o aceptado por cada uno.
 
 
 
 
          a-Si el voto es uno de los factores más importantes para mejorar el trabajo del aprendiz y los resultados….a…
 
          b- ¿qué esperamos? que todos en los centros puedan intervenir por igual…
 
          c-¿no sería mas justo?
 
 
 
Si el modelado del proceso de retroalimentación permite a los jóvenes desarrollar su propia autorregulación de mejorar el trabajo….
 
¿Cómo no un centro cualquiera deja de implementar toda una política de la regeneración de la universidad, escuela que tenga en cuenta los muchos matices de cada tema?
 
La retroalimentación es importante. Nos retroalimentamos con los aprendices a a diario, es más, nosotros también lo somos, pero si podemos hacerlo ayudandonos de la Machine learning (La tecnología Machine Learning está abriendo nuevas oportunidades para las aplicaciones de software en temas de retroalimentación, al permitir a los ordenadores aprender de grandes y de pequeñas cantidades de información sin necesidad de ser programados explícitamente, aprendiendo de los errores producidos y segun los datos personalizados, readaptarlos en otras direcciones, lo cual nos permite optar por otras opciones de aprendizaje…)
 
En este sentido, los sistemas Machine Learning representan un gran avance en el desarrollo de la inteligencia artificial, al imitar la forma en que aprende el cerebro humano -mediante la asignación de significado a la información y darnos más posibilidades de opción segun nuestros personalismos.
 
Figura-1-Marco-de-retroalimentacion-para-explicar-las-interacciones-recursivas-entre-la
El Machine learning identificará y categorizará las entradas repetitivas y utilizar la retroalimentación para fortalecer y mejorar su rendimiento. Es un proceso similar a cómo un niño aprende los nombres y la identidad de los animales, haciendo coincidir las palabras con las imágenes; el ordenador, poco a poco, aprende a procesar la información correctamente.
 
 
La evolución de los algoritmos que “aprenden” de los datos sin tener que programarse de forma explícita. Un subgrupo particular de Machine Learning se conoce como “aprendizaje profundo” (Deep Learning). Este término describe el uso de un conjunto de algoritmos llamados redes neuronales que toman como modelo el cerebro humano. Los avances en este aprendizaje profundo han impulsado una rápida evolución de las tareas de aprendizaje por parte de las máquinas en los últimos años, en particular el procesamiento del lenguaje y texto, y la interpretación de imágenes y vídeos. Estos sistemas, por ejemplo, llegan a identificar caras o a interpretar el idioma natural a una velocidad y con un grado de acierto que puede superar al de un ser humano.
 
 
 

 

 

 

 

“Sin entrar en detalles complejos sobre los diferentes paradigmas de Inteligencia Artificial y su evolución podemos dividir dos grandes grupos: la IA robusta y la IA aplicada.

 

  • Inteligencia Artificial robusta o Strong AI: trata sobre una inteligencia real en el que las máquinas tienen similar capacidad cognitiva que los humanos, algo que, como los expertos se aventuran a predecir, aún quedan años para alcanzar. Digamos que esta es la Inteligencia de la que soñaban los pioneros del tema con sus vetustas válvulas.
  • Inteligencia Artificial aplicada Weak AI (Narrow AI o Applied AI): aquí es donde entran el uso que hacemos a través de algoritmos y aprendizaje guiado con el Machine Learning y el Deep Learning.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo.

El Machine Learning en su uso más básico es la práctica de usar algoritmos para parsear datos, aprender de ellos y luego ser capaces de hacer una predicción o sugerencia sobre algo. Los programadores deben perfeccionar algoritmos que especifiquen un conjunto de variables para ser lo más precisos posibles en una tarea en concreto. La máquina es entrenada utilizando una gran cantidad de datos dando la oportunidad a los algoritmos a ser perfeccionados.

Desde los primeros albores de la temprana inteligencia artificial, los algoritmos han evolucionado con el objetivo de analizar y obtener mejores resultados: árboles de decisión, programación lógica inductiva (ILP), clustering para almacenar y leer grandes volúmenes de datos, redes Bayesianas y un numeroso abanico de técnicas que los programadores de data science pueden aprovechar” XAKATA

El sueño de entregar el aprendizaje personalizado utilizando objetos de aprendizaje que se ajusta al tiempo real, en cualquier lugar, en cualquier momento, justo suficientes necesidades del estudiante está a punto de convertirse en una realidad. Hoy en día, junto con muchos desarrollos importantes en la psicología de la instrucción, estándares abiertos, lenguajes de marcas estructuradas para la representación de datos interoperables, y el cambio de control de flujo de instrucción desde el cliente al servidor, una base totalmente nueva está haciendo realmente personalizado de aprendizaje en línea .

“Poco a poco las características subversivas de la computadora fueron erosionados distancia: En lugar de cortar a través y así desafiar la idea misma de fronteras temáticas, el equipo ahora se define un nuevo tema; en lugar de cambiar el énfasis del currículo impersonal a la exploración en vivo emocionados por los estudiantes, el ordenador se utiliza ahora para reforzar los caminos de la escuela. Lo que había comenzado como un instrumento subversivo de cambio fue neutralizado por el sistema y se convierte en un instrumento de consolidación”..… Audrey Watters

Lo que hace que la programación ed-tecnología “adaptable” es que la IA evalúa la respuesta de un estudiante (por lo general a una pregunta de opción múltiple), luego sigue con la “segunda mejor” cuestión, cuyo objetivo es el nivel “adecuado” de dificultad. Esto no tiene por qué requerir un algoritmo especialmente complicado, y la idea en realidad basada en “la teoría de respuesta al ítem”, que se remonta a la década de 1950 y el ascenso de la psicometría. A pesar de las décadas siguientes, sinceramente, estos sistemas no se han vuelto terriblemente sofisticados, en gran parte debido a que tienden a basarse en pruebas de opción múltiple.

Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde la evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.

https://juandomingofarnos.wordpress.com/…/los…/Los algoritmos sales de las Universidades de Juan Domingo Farnós Miró

Estamos hoy en la clase difusa del pensamiento calculador y comparaciones cuantitativas insta a que el utilitarismo, tal razonamiento no se basa en el trabajo de visibilidad a hacer. Más bien, eso depende de algoritmos de análisis, qui a su vez depende de la presa de los algoritmos silenciosos –los que convierten en silencio nuestro comportamiento en una avalancha de datos. (son la metafora de los presos alrededor que se pusieron alrededor de una torre de vigilanca para ser visualizados, hasta que estos alcanzaron la manera de evitarlo( estos eran los algoritmos)….

 

 

strategie-controllo-mentale

 

 

 

 

Este precio informativo se compone de DATOS ESTANDARIZADOS a través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aquí mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepción de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformará en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hará que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico, pero siempre seremos nostros quienes elijamos en última instancia el camino que vaos a seguir, frente a las múltiples propuestas en “beta” que nos presentará la tecnología..

 

 

 

 

 

Si partimos de la idea de que la REALIDAD es múltiple, podemos entender por qué aprender en la diversidad no tiene porque llevarnos a un punto común-….esta premisa es fundamental para entender el pensamiento crítico en los aprendizajes y sin la cuál sería imposible llevar a cabo aprendizajes basados en la diversidad-INCLUSIVIDAD (EXCELENCIA)…

…todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA), por medio de una mezcla de inteligencia artificial y algorítmica.

 
 
El beneficio más evidente de estas innovaciones es la creación de una ecología de aprendizaje que comparte recursos de grandes depósitos de contenidos en los objetos de aprendizaje que se comparten de forma individual, ampliamente, y de forma más económica.
 
Esto permitirá que la “máquina” en realidad adapte sus interfaces de usuario, el contenido de aprendizaje y la experiencia en sí misma, y presentar información de una manera que se adapte a las preferencias de los humanos….eso sin duda nos lleva a la VERDADERA SOCIEDAD INTELIGENTE.
Todo ello ocasionará un Aprendizaje integrado – aprendizaje en red que estará integrado en cada dispositivo, cada herramienta, cada recurso físico de LAS PERSONAS, no hay necesidad de una formación específica, la información más reciente estará disponible sólo en el tiempo, de fuentes auténticas COMPUTACIÓN UBÍCUA E I-BICUA, a juzgar por el valioso análisis de la red, siempre con el contexto y que las personas prestemos nuestra ayuda.
 
 
Por tanto debemos elegir entre dos posturas que condicionarán el futuro de la Sociedad, ya que la Educación es una de las principales piedras angulares en que gravita cualquier hábitat.
 
Una, sería seguir buscando mejoras, modificaciones, regeneraciones…a los Sistemas Educativos de amplio aspectro que venimos realizando las últimas generaciones-que sería seguir con una Educación eminentemente formal, estandarizada,
 
homogeneizadora…basada en Curriculums prescriptivos e igualadores… y enfocada a dar resultados que generen titulaciones previstas para que luego deriven en la sociedad en los trabajos clásicos de siempre…..
 
 
 
Ahora la Sociedad debe decidir como quiere que sea la Educación, cómo quieren que la innovación que se vaya produciendo, se desarrolle, …si es que realmente desean que esté, en cierta manera enmarcada y aceptada por todos,… una Educación natural, por tanto eminentemente no formal, informal, que pueda o no llegar a la formal, pero por medio de mecanismos no dados, es decir, de ir siempre hacia resutados finalistas, consabidos, previstos…sino de planteamientos creativos, constructivos y sobretodo priorizando la conectividad entre personas y/u organizaciones y estableciendo mecanismos generadores de procedimientos abiertos, flexibles y autoregenerables, donde la retroalimentación producto del ENSAYO-ERROR, sea la base del funcionamiento normal de la sociedad y eso se consigue con la ayuda del Machine learning.
 
 
 
 
Un artículo de Brighton analiza el rol de los nuevos medios digitales, los“UBIMEDIA” que por sus características –multifacéticas, convergentes,colaborativas y cooperativas, móviles- tienen el potencial de empoderar a las personas y crear una mayor cultura participativa.En este contexto las instituciones que tradicionalmente tenían la potestad de establecer aquello que está bien y lo que no lo está, hoy se ven amenazadas por nuevas reglas del juego. Estos retos nos llevan a pensar en nuevos perfiles de profesionales.
Hacen falta perfiles híbridos digitales-analógicos que sean capaces de traducir conocimiento de una comunidad a otra y que puedan generar valor al momento de conectar conocimientos. Necesitamos de habilidades multiplicadas y desarrollo de actitudes creativas, las cuáles se presentan como elementos claves. Es necesario a pensar en un aprendizaje mejorado, que no se limite a una disciplina o certificación, sino que sea permanente, distribuido y escalable, cuya trazabilidad esté en manos de la mayor parte de la población, cada uno con sus características…
 
Poder personalizar el proceso de aprendizaje a cada estudiante es vital para facilitar su progreso y conseguir que utilice todo su potencial. Es necesario adaptar la enseñanza a las necesidades de cada alumno para lograr atender sus dificultades y aprender a potenciar sus puntos más fuertes. Aquí interviene la trazabilidad educativa, un elemento importantísimo en este proceso.
 
¿Cómo funciona la trazabilidad educativa?
 
Utilizar herramientas digitales orientadas a este objetivo nos permite acceder a una gran cantidad de datos que nos aportarán la información necesaria para personalizar la educación a cada alumno. Aunque varían según la plataforma, generalmente podemos agruparlas en dos categorías:
 
          a-Seguimiento de uso: Se refiere a los datos relacionados con las conexiones a la plataforma y a cada recurso. Cuántas veces la visitan, cuánto tiempo dedican a cada recurso, cuántas veces acceden a ellos…
          b-Seguimiento de actividades: Suelen incluirse dos tipos de actividades, las autocorrectivas y las entregables. Las primeras, de respuesta cerrada (tipo test), tienen la ventaja de que son corregidas de forma automática por la aplicación, lo que ahorra un tiempo considerable al docente.
 
          c-Se podrá acceder a todos los datos relativos al tiempo dedicado, si han necesitado salir de la página para buscar más información, los intentos realizados, etc. Además, también puede medirse la participación en foros y debates.
Es también habitual que las herramientas nos permitan elaborar un seguimiento del progreso de los alumnos. Para ello, generan automáticamente informes a partir de las diferentes actividades y el uso de la plataforma, pudiendo referirse al conjunto de la clase o a estudiantes individuales.
 
 
 
1185323
Esta evidencia es convincente, pero lo que está claro es que el estado de la investigación en este campo todavía tiene que encontrar maneras efectivas y eficientes de muestra (por ejemplo, a través de productos de trabajo del alumno, tener la suficiente capacidad de encontrar caminos alternativos a las posibles respuestas con otras preguntas..
 
Hoy es fundamental analizar nuevas perspectivas para pensar el aprendizaje a la luz del acceso abierto y distribuido al conocimiento. La idea es sumergirnos en sus luces y sombras, la línea es difusa y las tecnologías son invisibles y naturales, para que su verdadera ayuda sea adecuada a las necesidades personalizadas y personales de las personas…
 
 
En esta exploración nos preguntamos no sólo porqué la resistencia al cambio de las organizaciones educativas sino que buscamos hacer un zoom a aquellos espacios de exploración que sí están abriendo oportunidades que son importantes de incluir en el radar.
 
 
Para ello, se plantea un travelling de tendencias que incluye la apertura radical al conocimiento, donde l”a evolución biológica puede ser hackeada por la mente humana y su esparcimiento viral; las ideas están vivas y en perpétuo cambio… “(open y self-publishing, open educational resources); nuevas formas de certificar conocimiento (open badges, open educational practices); nuevos perfiles (desing thinkers, digital curators, digital yonkis); cursos masivos abiertos (massive online courses, peer assessment); nuevas tipologías de habilidades (transmedia skills); investigación abierta y distribuida (open data) entre otros.
 
 
Los objetivos de estos proceso pretenden hacer frente a las necesidades actuales y las oportunidades de aprendizaje, mediante esta analítica recogiendo los enfoques multidisciplinares pero complementarios de diferentes campos, tales como Ciencias de la Computación, Ciencias de datos, Matemáticas, Educación, Sociología…, eso si, deben ser siempre personalizados y con la responsabilidad de los propios aprendices.
Necesitamos por tanto:
 
          1–Análizar el aprendizaje basado en competencias, lo que nos llevará…
 
          2–Aprender y por tanto a realizar la propia evaluación (recordemos que cada aprendizaje lleva impreso consigo la evaluación, ya no como una medición, si no como parte del mismo) con los procesos de aprendizaje de los demás mediante el análisis de ruta de aprendizaje personal y social. Al mismo tiempo, el mecanismo de aprendizaje tecno-social personalizado nos permite que el aprendiz aprenda de acuerdo a su situación y objetivos.
 
          3–Establecer una ruta de aprendizaje individual lo podemos modelar para registrar su proceso de aprendizaje. Por tanto, el espacio de aprendizaje personal (PLE), sera siempre un espacio no lineal…, es en esta situación donde el pensamiento crítico actua de manera determinante, para manifestarse capaz de deducir las consecuencias de lo que cada uno sabe, y sabe cómo hacer uso de la información para resolver problemas, y buscar fuentes de información pertinentes para aprender más…
 
 
          4-Realizar un análisis de aprendizaje para la evaluación de las competencias genéricas y específicas:
               a-La integración de la analítica de investigación y aprendizajes educativos.
               b-Analíticas de aprendizaje y el aprendizaje autorregulado.
               c-Intervenciones y análisis de los diferentes aprendizajes, estudio de casos…
               d-Implementaciones de la analítica de aprendizaje.
               e-Analíticas de aprendizaje y efectos a largo plazo (estudios sobre la analítica de aprendizaje).
               f-Los avances teóricos en la analítica de aprendizaje.
               g-Replicación y validación cruzada de las investigaciones existentes.
               h-Aspectos éticos de la analítica de aprendizaje.
               i-Analíticas de aprendizaje y formulación de políticas (policy makers)
               j–Interoperabilidad para la analítica de aprendizaje.
 
 
 
Otro beneficio de la personalización es que cada vez que se personaliza, a aprender y almacenar un poco más sobre el conjunto único de un alumno, se aportan posiciones diferenciadas al aprendizaje social.
 
Esto no solo permite llegar a un mejor AUTOAPRENDIZAJE, si no también una manera más de “emprendimiento” y “apropiación” de la red, como “espacio” claramente de aprendizaje personalizado y socializador.
 
Esta “vinculación” que se establece, es propia incluso del funcionamiento cerebral, como muy bien dice George Siemens y diría mi amigo argentina Alicia Banuelos (una maravillosa Física)…”la sinapsis neuroal provoca que las neuronas se vinculen, se relacionen unas con otras”.
 
3244476858
El cerebro emite una especie de corriente de “relación” que con un poco de entrenamiento, que lo tengo y mucho, tengo que establecer relaciones entre todos e incluirlos, si es necesario en mis ideas para mejorarlas…
 
En una base de datos tradicional, el esquema de una tabla se aplica en tiempo de carga de datos. Si los datos que se están cargando no se ajusta al esquema, a continuación, se rechaza. Este diseño es a veces llamado esquema de escritura ya que los datos se comprueban con el esquema cuando se escribe en la base de datos y eso se puede extrapolar a lo que pretendemos que los alumnos aprendan del curriculum preestablecido.
 
Normalmente por otra parte, no comprobamos los datos cuando se cargan ,cuando los comentamos, explicamos… sino más bien cuando se emite una consulta. Esto se conoce como esquema de lectura.
Hay ventajas y desventajas entre los dos enfoques. Esquema de lectura hace que tengamos una carga inicial muy rápida, ya que los datos no tienes que ser leídos, analizados y serializados en el disco en formato interno de la base de datos.
 
La operación de carga es sólo una copia de archivo o de movimiento, y es lo que hacemos con los aprendizajes mecánicos de lectura y escritura (totalmente nefastos) es mucho más flexible: : considerar la posibilidad de dos o más esquemas para los mismos datos subyacentes, dependiendo del análisis que se realiza y de la persona que tenga que hacerlo (personalización en los procesos de aprendizaje).
 
En un futuro próximo creo que todo el aprendizaje será límites-less (Geoge Siemens). Todo el contenido de aprendizaje será computacional nada preestructurado. Todo aprendizaje será granular, con coherencia formada por alumnos individuales (inclusividad y ubicuidad de Juan Domingo Farnos)
 
 
Sistemas artificiales, como lo es la ENSEÑANZA, EL CURRÚLUM EDUCATIVO, LOS CONTENIDOS EDUCATIVOS, LAS MISMAS ACREDITACIONES (TITULACIONES) serán sustituidos,, por los modelos basados en la complejidad y la emergencia (DISRUPCIÓN)..
 
Pero las ideologías influyen en el diseño,influyen en la concepción de los SISTEMAS EDUCATIVOS, entonces el diseño limita las opciones futuras. No tenemos que mirar muy lejos para ver ejemplos de esta simple regla: aulas, el diseño de las actividades de organización del trabajo, la política y el funcionamiento de las organizaciones educativas (escuelas, universidades…) Lo que creamos para que sobreviva en una época sirve como neurosis para otra (esto creo que le gustaría a mi amiga Dolors Reig).
 
En la educación – especialmente en la tecnología de mejora de la educación – se nota el final de una época y el principio de otra, la propia OBSOLESCENCIA nos lo indica, lo que es más difícil de ver en la vida cotidiana de los espacios cerrados y obligatorios educativos..
 
Los asesores de educación y altavoces normalmente nos preguntamos “si un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”. Obviamente, esta es una afirmación absurda (incluso si pasamos por alto los retos de viajes en el tiempo). Los asesores de educación y algunos “voceros” normalmente declaran “si, un estudiante de hace 100 años llegó a nuestras aulas, se sentiría como en casa”.
 
Por tanto pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.
 
Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.
 
“Vamos ya a aprender durante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese planteamiento que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, uniforme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodarse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”
 
 
Hay muchas maneras de personalizar el aprendizaje. Sin embargo, al igual que los términos de estilos y la motivación del aprendizaje, la personalización es otro término mal definido. Para ser más específicos, se describe la personalización aquí con cinco niveles con creciente sofistificación, cada nivel que describe una estrategia de personalización específica. Desde los más simples a las más complejas, las cinco estrategias son:
 
(a) nombre reconocido;
 
(B) describe a sí mismo;
 
(C) segmentados;
 
(D) cognitivo-basada; y
 
(e) de base integral de la persona.
 
A lo mejor el “sueño de algunos de una educación autónoma y libre (solo realizable mediado con la Machine learning, AI, internet, TIC), no es tal sueño y es una realidad.
 
juandon
Anuncios