algorithms1

En la reciente DevLearn, Donald Clark habló de AI en el aprendizaje, y si bien…..

…como telón de fondo, yo era una groupie AI salir de la universidad, y he estado actual con la mayor parte de lo que ha pasado. Debemos saber un poco de la historia de la subida de los Sistemas Inteligentes de Tutoría, los problemas con el desarrollo de modelos de expertos, y los enfoques actuales como Knewton y Smart Sparrow. No he tenido la libertad de seguir las últimas novedades tanto como me gustaría, pero Donald dio una gran visión.

Se refirió a los sistemas de estar a punto de los contenidos de análisis automático y el desarrollo de aprendizaje en torno a ella. Mostró un ejemplo, y creó preguntas caiga en una página sobre Las Vegas. También mostró cómo los sistemas pueden adaptarse individualmente al alumno, y discutió cómo podría ser capaz de proporcionar tutoría individual sin muchas limitaciones de los profesores (cognitiva sesgo, fatiga), y no sólo se puede personalizar, pero sí mejorar y escalar!

Uno de mis problemas a corto plazo era que la pregunta autogenerado fueron sobre el conocimiento, no habilidades. Si bien estoy de acuerdo que el conocimiento que se necesita , así como su aplicación, creo que se centra en este último primero es el camino a seguir.

Esto va junto con lo que Donald ha criticado con razón, como problemas con preguntas de opción múltiple. Señala cómo se utilizan en gran parte como prueba de conocimientos, y estoy de acuerdo que eso está mal, pero mientras hay situaciones prácticas mejores (léase: simulaciones / escenarios / juegos serios), se puede escribir de opción múltiple como mini-escenarios y obtener buenas prácticas . Sin embargo, es aún un problema de investigación interesante, para mí, para tratar de conseguir buenas preguntas de escenarios de contenido auto-análisis.

Se puede ir por un sistema híbrido, donde nos dividimos las funciones entre el ordenador y humana sobre la base de lo que cada uno de nosotros hacemos bien, y me dijo que eso es lo que está viendo en las empresas.

La última parte que me interesaba era si y cómo tales sistemas podrían desarrollar no sólo el aprendizaje de habilidades, pero el meta-aprendizaje o de aprender a aprender. Profesores reales pueden desarrollar este y modificarlo (si bien es cierto raro), y sin embargo, es probable que sea la mejor inversión. En mi aprendizaje basado en la actividad, le sugerí que poco a poco los alumnos deben hacerse cargo de la elección de sus actividades, a desarrollar su capacidad de convertirse en autodidactas. También he sugerí cómo podría ser en capas en la parte superior de experiencias regulares de aprendizaje. Creo que esto va a ser un área interesante para el desarrollo de experiencias de aprendizaje que son escalables, pero realmente desarrollan los estudiantes para los tiempos venideros.

Hay más: normas pedagógicas, modelos de contenido, modelos alumno, etc, pero finalmente estamos consiguiendo cerca de ser capaces de construir este tipo de sistemas, y debemos ser conscientes de cuáles son las posibilidades, la comprensión de lo que se requiere, y en la búsqueda tanto para lo bueno y lo malo de barril. Entonces, ¿qué dices?

http://blog.learnlets.com/… De Clark Quinn a Donald Clark.

Me suena tanto, mejor dicho, ES CALCADO….https://juandomingofarnos.wordpress.com/ (Etiqueta ‪#‎Algoritmos‬ de Juan Domingo Farnos. https://juandomingofarnos.wordpress.com/…/nuevos-paradigma…/…..

https://juandomingofarnos.wordpress.com/…/algoritmos-perso…/

https://juandomingofarnos.wordpress.com/…/algoritmos-perso…/

https://juandomingofarnos.wordpress.com/…/aprendizaje-agil…/

….y muchos mas con esta etiqueta (#ALGORITMOS, en https://juandomingofarnos.wordpress.com Innovacion y Conocimiento de Juan Domingo Farnós Miró

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformara en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico.

Estos algoritmos de personalización (Rauch, Andrelczyk y Kusiak, 2007), recopilar información del usuario y analizan los datos para que pueda ser transmitida al usuario en momentos específicos (Venugopal, Srinivasa y Patnaik, 2009). Por ejemplo, cuando estoy terminado de ver un video en YouTube o una película en digitaly he aquí que presenté con una lista de recomendaciones sobre los géneros que acabo consumidas. Esta idea funciona de forma similar con algoritmos de personalización que sería capaz de recomendar cursos o avenidas de aprendizaje basado en el conocimiento previo de las personas intervinientes en el proceso de aprendizaje ABIERTO, INCLUSIVO Y UBICUO .

¿El aprendizaje PERSONALIZADO tiene suficiente mejoría en el aprendizaje del aprendiz para justificar los costos de un sistema de aprendizaje más complejo?
¿Cómo podemos aprovechar algoritmos de aprendizaje automático “big data” y otros.. para la construcción de sistemas de aprendizaje personalizadas más eficientes y rentables?
¿Cómo pueden las ideas y resultados de la investigación de las ciencias cognitivas, utilizarlos para mejorar la eficacia de los sistemas de aprendizaje personalizados?.

Coincidiendo con el post de Pierre Levy: EML: A Project for a New Humanism. An interview with Pierre Lévy me pregunto ¿Cómo será el nuevo modelo y como será capaz de describir que nuestra forma de crear y transformar el significado, y que sea computable?….no tardará mucho, de eso podeis estar seguros.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

La gente tiene que aceptar su responsabilidad personal y colectiva. Porque cada vez que creamos un vínculo, cada vez que “al igual que” algo, cada vez que creamos un hashtag, cada vez que compremos un libro en Amazon, y así sucesivamente,… que transformemos la estructura relacional de la memoria comúny eso lleva, como venimos diciendo siempre, una responsabilidad y un compromiso.

Por lo tanto, también tenemos que desarrollar el PENSAMIENTO CRÍTICO Todo lo que encontremos en el Internet es la expresión de puntos de vista particulares, que no son ni neutrales ni objetivos, sino una expresión de subjetividades activas. ¿De dónde viene el dinero? ¿De dónde proceden las ideas? ¿Qué es el contexto pragmático del autor? etcétera
Este precio informativo se compone de DATOS ESTANDARIZADOS a través del que hemos llegado a definir nosotros mismos: transcripciones escolares, registros de salud, cuentas de crédito, títulos de propiedad, identidades legales. Hoy en día, tesis arraigada tipo de individualidad datos están siendo blanco amplió para abarcar más y más de lo que podemos ser: (En educación seria el PERSONALIZED LEARNING, que nosotros mismos abogamos y además instauramos en algoritmos personalizados, nunca creadores de patrones)..

La transformación es el cambio de una o muchas variables en el estudio.

Se transforman variables, por ejemplo, al remplazar los valores originales por logaritmos (transformación logarítmica). Frecuentemente los datos que son obtenidos no se ajustan a una distribución normal, por lo cual es inapropiado el ejecutar pruebas paramétricas

Muchas variables no se comportan de forma lineal o aritmética, por ejemplo las abundancias siguen un patrón exponencial.
En la educación básica se promueve que el sistema decimal es el único “natural”

Nunca vemos los algoritmos que hacen su trabajo, incluso a medida que nos afectan. Ellos producen en sus sistemas de cifrado, todo invisible, enterrado en cajas negras componer silencio sinfonías de ceros y unos….

Pierre Levy, el pensador de TUNEZ, propone una forma de procesar la información «codificandola» en algoritmos. Los humanos tenemos una habilidad muy especial, que es la de manipular símbolos. Y a lo largo de nuestra historia, cada mejora en esa habilidad ha producido cambios muy significativos a nivel económico, social, político, religioso, epistemológico, científico y educativo. Esos cambios, que trazan una evolución cultural, van desde los rituales y narrativas primigenios, la invención de la escritura, la creación de alfabetos y sistemas numéricos consensuados y permanentes, la fabricación de un artefacto tecnológico como la imprenta hasta arribar a la automatización de la reproducción en la difusión de símbolos.

Todos esos pasos aumentaron la posibilidad de almacenamiento de nuestra memoria, la expandieron, incrementaron la inteligencia colectiva y subieron un nivel en la escala evolutiva cultural.

En ese sentido, la propuesta de Lévy se aleja de la inteligencia artificial. La suya es una perspectiva completamente distinta: para él no se trata de crear máquinas inteligentes o más inteligentes que los humanos, sino de hacer a los humanos más inteligentes. Cada nivel de complejidad implica un tipo de conocimiento emergente nuevo y más poderoso, en el que todos los procesos cognitivos están aumentados. El último paso, es decir, aquel hacia el cual tendemos, sería el conocimiento algorítmico.

Y esa propuesta es la que hacemos nosotros (JUAN DOMINGO FARNOS https://juandomingofarnos.wordpress.com/…/algoritmos…/

INCLUSO DENTRO DE UN PROCESO transversal y multidisciplinar, para lograr nos lo eso, sino una autonomía en los aprendizajes y una personalizacion, como nunca hasta ahora se jha producido (POR TANTO TOTALMENTE ORIGINAL, apoyada en todo lo que les escribo, más las distintas potencialidades que tenemos de aprendizaje que tenemos las personas en nuestro cerebro y que les visualizo.

No podemos confundir la aplicación de los algoritmos en el aprendizaje personalizado (personalized learning), algunos lo llaman educación personalizada, aunque realmente está muy lejos uno de la otra, como realizar clases particulares, tal como hacen algunas escuelas de Nueva York, “utiliza el análisis de aprendizaje para desarrollar en las matemáticas personalizadas programas de aprendizaje. La Escuela con algoritmos de aprendizaje realiza evaluaciones cotidianas de estilos de aprendizaje y matemáticas de los estudiantes, y lo hace para producir un aprendizaje “lista de reproducción” personalizado para cada alumno. Esta lista se compone de clases particulares de matemáticas, que se ponen en el orden en que el algoritmo determina que es óptimo para el desarrollo de las habilidades matemáticas de los estudiantes. Ciertamente, Escuela de uno se apresura a señalar que este está destinado a complementar, no sustituir, la experiencia de un maestro individual”..

La personalización por las tecnologías digitales sólo libera los seres humanos para personalizar mejor nuestra vida (es decir, encontrar nuestras propias maneras), lo demás deben hacerlo las tecnologías y e aqui mi insistencia en conseguir un ALGORITMO, el cual pueda facilitar la recepcion de DATOS, pasarlos por un proceso de ANALISIS Y CRITICA, lo que los transformará en APRENDIZAJES. Si todo el proceso esta evaluado, necesitaremos el algoritmo para que nos realice la retroalimentación. Lo cual hara que todo nuestro proceso de aprendizaje este ayudado por este proceso tecnológico, pero siempre seremos nostros quienes elijamos en última instancia el camino que vaos a seguir, frente a las múltiples propuestas en “beta” que nos presentará la tecnología.

Pronto el registro y análisis de datos semánticos podrá convertirse en un nuevo lenguaje común para las ciencias humanas y contribuir a su renovación y el desarrollo futuro.

Todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA,) por medio de una mezcla de inteligencia artificial y algorítmica.

Si partimos de la idea de que la REALIDAD es múltiple, podemos entender por qué aprender en la diversidad no tiene porque llevarnos a un punto común-….esta premisa es fundamental para entender el pensamiento crítico en los aprendizajes y sin la cuál sería imposible llevar a cabo aprendizajes basados en la diversidad-INCLUSIVIDAD (EXCELENCIA)…

…todo el mundo será capaz de clasificar los datos como quieran. Cualquier disciplina, ninguna cultura, ninguna teoría será capaz de clasificar los datos a su manera, para permitir la diversidad, utilizando un único metalenguaje, para garantizar la interoperabilidad. (EXCELENCIA PERSONALIZADA AUTOMATIZADA, por medio de una mezcla de inteligencia artificial y algorítmica. (leer más…)

“Vamos ya a aprender dirante toda nuestra vida y en cualquier momento, el qué, cuándo, cómo y dónde (eligiendo con quién), ya han dejado de ser, una obligación para pasar a seer algo usual en nuestra vida, las TIC, Internet, la Inteligencia Artificial, “han dinamitado” todo ese plantemaineto que no sabíamos ni podíamos superar, ahora el estaticismo de aprender de manera controlada, unifrorme, el “ocupar un espacio y un tiempo”, han dejado ya de existir, por lo cuál, vivimos aprendiendo, aprendemos en cada momento de nuestra vida, por eso, cualquier planteamiento que hagamos en este impás, debe acomodrse a esta nueva manera de entender la vida que ya está aquí, pero estamos “suscribiendo” las maneras de llegar a ello”.

Este es nuestro campo de trabajo de los ALGORITMOS CON EL PERSONALIZED LEARNING https://juandomingofarnos.wordpress.com/tag/algoritmos/

¿Qué es el aprendizaje autodirigido todo esto?
“En su sentido más amplio,” aprendizaje autodirigido “describe un proceso por el cual los individuos toman la iniciativa, con o sin la ayuda de los demás, en el diagnóstico de sus necesidades de aprendizaje, la formulación de objetivos de aprendizaje, identificar los recursos humanos y materiales para el aprendizaje, la selección y aplicar las estrategias de aprendizaje, y la evaluación de los resultados del aprendizaje. “(Knowles, 1975, )
Elementos del aprendizaje autodirigido
El Aprendizaje autodirigido se basa en los siguientes elementos:

Estudiantes toman la iniciativa de buscar una experiencia de aprendizaje
Toman la responsabilidad y la rendición de cuentas para completar su aprendizaje (evaluación y formación)
Tienen una legibilidad de aprender
Ellos fijan sus propias metas de aprendizaje
Se involucran en el aprendizaje
Ellos evalúan su aprendizaje

Una de la idea errónea acerca de la auto-aprendizaje es que los estudiantes aprenden en completo aislamiento de los demás, cuando en realidad la idea central detrás del aprendizaje se debe a factores motivacionales intrínsecos derivados de los alumnos propio deseo de aprender y llevar a su / su experiencia de aprendizaje comenzando con el reconocimiento de la necesidad de aprender.
.Seguramente entiende que es mejor convivir con términos que vienen en y fuera de la moda sobre una base regular.
.De lo que hablo es de , funciones como la minería de datos tradicional y estadísticos que están siendo dobladas debajo del paraguas de aprendizaje automático.

.En algunos casos, los algoritmos están ocultos detrás de una interfaz de usuario para que los usuarios pueden no saber lo que está sucediendo bajo el capó. Los usuarios pueden creer que se está utilizando una nueva capacidad o algoritmo que se acerca más a la inteligencia artificial. Sin embargo, serían los mismos usuarios estar emocionado si supieran que están comprando una versión muy temprana e inmadura de otra herramienta para crear un árbol de decisión?
Sería como si utilizaramos una ETIQUETA, un hashtag y a continuación todo el aprendizaje estuviese como montado en nata, es decir, que estuviese ya todo cocinado precviamente y los algoritmos solo pudiesen conducirnos por el camino trazado y hasta el destino que habiamos predecido…
. Pensando en una partida de ROL yomo he jugado el juego, me di cuenta de que una estrategia de la elección de un espacio con una gran cantidad de opciones en los próximos dos o tres movimientos, así como el próximo movimiento, por lo general le ganaría a moverse al espacio donde existía la mayor cantidad de opciones para sólo el siguiente movimiento….con lo cual lo que prima es la diversidad y el trabajo creativo, no puede ser de otra manera, pero con un componente cientifico DE LÓGICA MATEMÁTICA y por tanto calculable con un algoritmo, pero abierto, por supuesto….
. El programa identifica todos los espacios posibles que podría trasladarse, o lo que es lo mismo, los diferentes tipos de aprendizajes según los contextos, objetos de aprendizaje, escenatios…
. Realmente esto si que es meta-aprendizaje, el aprendizaje real de esta nueva sociedad, un mar de opciones, caóticas muchas veces, que hemos de resolver para llegar a identificar las ideas que tenemos y que en un principio llegaron a nuestro cerebro como informaciones-imputs y que queremos desarrollar, para algo concreto, no necesariamente material, si eso es APRENDIZAJE, O EFICENCIA O… pues bienvenido sea…
.Mientras que mucha gente cree que detras de estos planteamientos existe mucha “inteligencia” bien sea por el posicionamiento teórico o por la realización práctica-hibrida entre personas y algoritmos-, la realidad es que no es asi.
. El punto es que con algunas reglas simples, recurrentes podemos tener la oportunidad de crear estrategias diferentes y creativas que con la ayuda de la inteligencia artificial, nos llevara a aprendizajes, eficiencia, trabajo..de un alto nivel, nada a ver con las del siglo anterior y aquí, si se ven las diferencias, efectivamente. .
.Sin embargo, en estos momentos no ESTAMOS PENSANDO EN APRENDER Estoy comenzando a preguntarme si alguno lo suficientemente complejo y me refiero a algun algoritmo basado en normas es indistinguible para la inteligencia artificial o verdadero aprendizaje automático adaptativo, o el aprendizaje de hoy y del mañana
Nos centramos en los sistemas educativos inteligentes adaptativas, tales como Sistemas Tutoriales Inteligentes (ITS) y adaptativos
Sistemas Hipermedia (AHS). Una idea común detrás de los sistemas educativos de adaptación es que la información sobre cada aprendiz (personas) y su contexto actual, puede hacernos variar las propuestas a tener en cuenta.
Para poder establecer nuestras investigaciones en la actualidad deberemos remitirnos al apartado móvil y ubícuo.

El aprendizaje de la ciencia, la psicología, la pedagogía, las ciencias de la computación, internet, el mundo de la empresa y del trabajo, la conciliacion familiar, el ocio….se cruzan y mediante la desconstrucción de todos, pero no en su literalidad, sino en en su capacidad de transversalidad, podremos estar en medio de todos ellos.

Con la proliferación heterogénea de dispositivos móviles, la entrega de materiales de aprendizaje en este tipo de poscionamientos se convierte en objetos de más y más valor. El Aprendizaje personalizado y la adaptación de contenidos, por lo tanto, se vuelve cada vez más importante para satisfacer las diversas necesidades impuestas por los dispositivos, los usuarios, los contextos de uso, y la infraestructura.

Registros del servidor históricos ofrecen una gran cantidad de información sobre las capacidades del hardware, las preferencias de los alumnos, y las condiciones de la red, que puede ser utilizada para responder a una nueva solicitud de usuario con el contenido de aprendizaje personalizado creado a partir de una petición similar anterior. Proponemos un aprendizaje personalizado con un Mecanismo de Adaptación de Contenidos , por ejemplo… que aplique técnicas de minería de datos, incluyendo clustering y enfoques de los árboles de decisión, para gestionar eficientemente un gran número de solicitudes de los aprendices “. El método propuesto de manera inteligente y directo es entregar el contenido correcto para un aprendizaje personalizado con mayor fidelidad por medio de la decisión de la adaptación propuesta y procesos de síntesis . Además, los resultados experimentales indican que es eficaz y se espera que resultar beneficiosa para cualquiera que quiera aportar valor a la sociedad.

Después del post “Paradigmas educativos“ ….Hemos realizado este trabajo con el objetivo de conocer sobre los paradigmas de la
investigación educativa como son el positivismo, interpretativo, sociocrítico sus métodos y
técnicas, conceptos y principios que son herramientas que nos ayudará para el presente y
futuro como docentes y estudiantes. La investigación en tecnología educativa está
forzosamente relacionada con lo que se desarrolla en todas aquellas ciencias y disciplinas en
las que se fundamenta, por ello su evolución ha seguido los mismos caminos que la
investigación didáctica en general y también ha contemplado la polémica entre los paradigmas
positivista, interpretativo, socio-crítico….

…CONCLUSION
Desde la perspectiva cualitativa la investigación educativa pretende la interpretación de los
fenómenos, admitiendo desde su planteamiento fenomenológico que admite diversas
interpretaciones. Muchas veces hay una interrelación entre el investigador y los objetos de
investigación, pero las observaciones y mediciones que se realiza se consideran válidas
mientras constituyan representaciones auténticas de alguna realidad. Tener paradigmas y
pensar que cada uno corresponda a un concepción de construcción de conocimientos, una
limitante impuesta por una realidad extrapolada desde un conocimiento acumulado que no llega
A una profundidad que subraye en lo visible la realidad, cada uno de los paradigmas guarda
sentido pero a la vez, uno tiene razón de ser función del otro. Términos de paradigmas se
puede encontrar hoy en cientos textos científicos, en artículos de los más variados contextos,
por lo general su empleo viene del sentido que se ha generalizado a partir de la obra de Kuhn.
“La estructura de las revoluciones científicas”. No existe aún una primera teoría unificadora de
la educación que nos permita analizar y solucionar la globabilidad y la complejidad de los
problemas de la educación. Peor los problemas existen y es posible asumir una de dos
posiciones; La teórica y la práctica.
Esta trilogía paradigmática, conformada por el paradigma cientificista, el paradigma hermético y
el paradigma crítico han originado una ruptura epistemológica con un subsecuente proliferación de diferentes estudios, enfoques, teorías y prácticas dentro de la esfera de la
investigacion educativa, tratando de legitimar desde cada uno de estos paradigmas una
propuesta emergente que sirva de fundamento para orientar la acción educativa y el proceso
enseñanza-Aprendizaje….

Si en el primer post hablamos de paradigmas, ahora lo haremos de “investigación“…Mientras que la etnografía general se basa en datos cualitativos, no quiere decir que los enfoques cuantitativos no deben ser empleados en el proceso de investigación. La combinación de los dos cables a un “enfoque de métodos mixtos”, que puede adoptar diversas formas: la recolección y análisis de datos pueden ser separados o dirigirse juntos, y cada uno de ellos se pueden utilizar en el servicio de la otra. Por supuesto, esto no es nuevo en los círculos académicos y la etnografía corporativa, pero parece que hay un renovado interés últimamente en este tema, ya que sin duda alguna los aspectos INFORMALES, están superando los formales.

Uno de los impulsores de este renovado interés es la enorme cantidad de información generada por las personas, las cosas, el espacio y sus interacciones – lo que algunos han llamado ” Big Data “: Los grandes conjuntos de datos creados por la actividad de las personas en los dispositivos digitales de hecho ha dado lugar a un aumento de las “huellas” de aplicaciones para teléfonos inteligentes, programas de ordenador y sensores ambientales (INTELIGENCIA ARTIFICIAL) Dicha información se espera actualmente para transformar la forma en que estudiamos el comportamiento y la cultura humana, con, como de costumbre, las esperanzas utópicas, distópicas y miedos …, llegando a entender estos datos como METADATOS….

Encontramos términos que admiten conceptos con los que muchos estaríamos de acuerdo : Etno-minería, como su nombre indica, combina técnicas de la etnografía y la minería de datos. En concreto, la integración de técnicas de minería de datos etnográficos y de etno-minera incluye una mezcla de sus puntos de vista (en lo interpretaciones son válidas e interesantes, y cómo deben ser caracterizados) y sus procesos (lo que selecciones y transformaciones se aplican a los datos para encontrar y validar las interpretaciones).

Por medio de estas investigaciones, esta integración tiene por objeto poner de relieve nuevas formas de entender y potencialmente inspirar el diseño de la investigación la interacción persona-ordenador…

La misma librería JMSL incluye tecnología de redes neuronales que complementa las ya existentes funciones de minería de datos, modelado y predicción, disponibles en toda la familia de productos IMSL. Las clases para la predicción basada en redes neuronales ofrecen un extraordinario potencial , gracias a su capacidad de crear modelos predictivos a partir de datos históricos y de “aprender” para optimizar el modelo a medida que se obtiene más información, lo podríamos llamar “RETROALIMENTACIÓN CONTINUADA Y MULTICANAL”

Una de las principales características de este conjunto de clases de redes neuronales es su capacidad para imitar los procesos humanos de resolución de problemas, mediante la aplicación de los conocimientos adquiridos de datos históricos a nuevos problemas, lo que permite afinar la precisión de las predicciones con el tiempo. Gracias a ello, es posible extraer información, como datos históricos sobre costes, y aplicarlos a la red neuronal para predecir costes futuros con un elevado grado de precisión.

Dicho esto, el enfoque de métodos mixtos, ya se trate de grandes conjuntos de datos o no, no es tan sencillo. Hay problemas potenciales vale la pena explorar. Los temas más importantes reside en el hecho de que los métodos cualitativos y cuantitativos no necesariamente se mezclan fácilmente en el nivel epistemológico: ¿cómo supuestos positivistas incorporados en la mezcla de la investigación cuantitativo con puntos de vista más interpretativos? Otro problema consiste también en el proceso de triangulación entre los datos: en caso de que sólo estar al servicio de uno al otro? ¿O es posible recolectar y analizar los dos tipos de datos de una forma más integradora? Entonces, ¿qué significa todo esto en un sentido práctico?

Tenemos diferentes autores que hablan sobre ello:

Rebekah Rousi (@ RebekahRousi) describirá cómo se combinan los resultados del cuestionario con las observaciones sobre el terreno para investigar cómo las personas experimentan sus interacciones con los diseños de ascensores.
Fabien Girardin (@ fabiengirardin) mostrará cómo utilizar los datos del sensor para producir observaciones de campo en un estudio de Le Louvre en París.
Rachel Shadoan ( @ RachelShadoan ) y Alicia Dudek ( @ aliciadudek ) describirán los resultados de sus investigaciones en Juegos de plantas, un juego de rol online.
Alex Leavitt ( @ AlexLeavitt ) discutirá su investigación sobre Tumbler con una perspectiva etnográfica computacional.
Tricia Wang ( @ triciawang ) va a compartir sus pensamientos acerca de lo opuesto a los grandes datos, en lo que ella llama “datos” de espesor.
David Ayman Sama ( @ ayman ) de Yahoo! Research describirá su perspectiva personal sobre el tema.

Obviamente será necesario seguir este tema y tener en cuenta nos solo los procesos intrínsecos de investigación, que evidentemente van a pasar de ser “formales” a tomar otros caminos más informales y adaptados a las personas, organizaciones, contextos, disposiciones…., si no también las diferentes tecnologías que pueden objetivar y subjetivar, los elementos, planteamientos, hipótesis,…del momento (tiempo) y del lugar (espacio)….

Fuentes:

http://ethnographymatters.net/…/small-data-people-in-a-big…/ Etnography Matters

Farnós, Juan Domingo : http://www.academia.edu/3224671/Paradigmas_educativos Paradigmas Educativos

At the recent DevLearn, Donald Clark talked about AI in learning, and while I largely agreed with what he said, I had some thoughts and some quibbles. I discussed them with him, but I thought I’d record them here, not least as a basis for a further discussion.
blog.learnlets.com